Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness im...Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness impregnation method. A 7-step heterogeneous reaction model of the oxidative coupling of methane to C2 hydrocarbons was conducted by co-feeding methane and oxygen at a total pressure of 1 bar over the catalyst. The kinetic measurements were carried out in a micro-catalytic fixed bed reactor. The kinetic data were obtained at the appropriate range of reaction conditions (4 kPa〈Po2 〈20 kPa, 20 kPa〈PcH4〈80 kPa, 800 ℃〈T〈900℃). The proposed reaction kinetic scheme consists of three primary and four consecutive reaction steps. The conversions of hydrocarbons and carbon oxides were evaluated by applying Langmuir-Hinshelwood type rate equations. Power-law rate equation was applied only for the water-gas shift reaction. In addition, the effects of operating conditions on the reaction rate were studied. The proposed kinetic model can predict the conversion of methane and oxygen as well as the yield of C2 hydrocarbons and carbon oxides with an average accuracy of ± 15%.展开更多
A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressu...A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst.展开更多
A physical mixture of alkali-promoted iron catalyst with binder based on Fischer-Tropsch synthesis and an acidic co-catalyst (HZSM5) for syngas conversion to hydrocarbons was studied in a fixed bed micro reactor. De...A physical mixture of alkali-promoted iron catalyst with binder based on Fischer-Tropsch synthesis and an acidic co-catalyst (HZSM5) for syngas conversion to hydrocarbons was studied in a fixed bed micro reactor. Deactivation data were obtained during the synthesis over a 1400 h period. The deactivation studies on iron catalyst showed that this trend followed the phase transformation Fe2.2C ( ε′) → Fe5C2 (χ) → Fe3C (θ), and the final predominant phase of the catalyst was Fe3C (θ). Deactivation of zeolite component in bifunctional catalyst may be caused by coking over the zeolitic component, dealumination of zeolite crystals, and migration of alkali promoters from iron catalyst under synthesis conditions. The deactivation rate of iron catalyst was also obtained.展开更多
The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the ...The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the primary pathway formed in the CO dissociation steps reacted with co-adsorbed hydrogen or carbon monoxide to produce H2O and CO2,respectively.The secondary pathway was the water-gas shift reaction.The results indicated that the CO2 production led to an increase in both primary and secondary pathways,and H2O production decreased when surface basicity of the catalyst increased in the order Ca 〉 Mg 〉 La.展开更多
The detailed kinetics of Fischer-Tropsch synthesis over an industrial Fe/Cu/La/Si catalyst was studied in a continuous spinning basket re- actor under the conditions relevant to industrial operations. Reaction rate eq...The detailed kinetics of Fischer-Tropsch synthesis over an industrial Fe/Cu/La/Si catalyst was studied in a continuous spinning basket re- actor under the conditions relevant to industrial operations. Reaction rate equations were derived on the basis of Langmuir-Hinshelwood- Hougen-Watson type models for Fischer-Tropsch synthesis based on possible reactions sets originated from the carbide, enolic and combined enol/carbide mechanisms. Kinetic model candidates were evaluated by the global optimization of kinetic parameters, which were realized by first minimization of multi-response objective functions with conventional Levenberg-Marquardt method. It was found that an enolic mech- anism based model could produce a good fit of the experimental data. The activation energy for paraffin formation is 95 kJ.mo1-1 which is smaller than that for olefin formation (121 kJ.mol-1).展开更多
In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is eval...In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis(FTS).The prepared catalysts were carefully characterized by nitrogen adsorption-desorption,hydrogen chemisorption,X-ray diffraction,Fourier transform infrared spectroscopy,Raman spectroscopy,temperature programmed reduction,transmission electron microscopy,and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets.The results showed that with increasing the cobalt loading on the rGO support,the carbon defects are increased and as a consequence,the reduction of cobalt is decreased.The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co0 average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size.The products selectivity results indicated that the methane selectivity decreases,whereas the C5+selectivity raises with the increasing of the cobalt particle size,which can be explained by chain propagation in the primary chain growth reactions.展开更多
基金This work was financially supported by the Research Department of Iran University of Science and Technology
文摘Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon, and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts. The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness impregnation method. A 7-step heterogeneous reaction model of the oxidative coupling of methane to C2 hydrocarbons was conducted by co-feeding methane and oxygen at a total pressure of 1 bar over the catalyst. The kinetic measurements were carried out in a micro-catalytic fixed bed reactor. The kinetic data were obtained at the appropriate range of reaction conditions (4 kPa〈Po2 〈20 kPa, 20 kPa〈PcH4〈80 kPa, 800 ℃〈T〈900℃). The proposed reaction kinetic scheme consists of three primary and four consecutive reaction steps. The conversions of hydrocarbons and carbon oxides were evaluated by applying Langmuir-Hinshelwood type rate equations. Power-law rate equation was applied only for the water-gas shift reaction. In addition, the effects of operating conditions on the reaction rate were studied. The proposed kinetic model can predict the conversion of methane and oxygen as well as the yield of C2 hydrocarbons and carbon oxides with an average accuracy of ± 15%.
文摘A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst.
文摘A physical mixture of alkali-promoted iron catalyst with binder based on Fischer-Tropsch synthesis and an acidic co-catalyst (HZSM5) for syngas conversion to hydrocarbons was studied in a fixed bed micro reactor. Deactivation data were obtained during the synthesis over a 1400 h period. The deactivation studies on iron catalyst showed that this trend followed the phase transformation Fe2.2C ( ε′) → Fe5C2 (χ) → Fe3C (θ), and the final predominant phase of the catalyst was Fe3C (θ). Deactivation of zeolite component in bifunctional catalyst may be caused by coking over the zeolitic component, dealumination of zeolite crystals, and migration of alkali promoters from iron catalyst under synthesis conditions. The deactivation rate of iron catalyst was also obtained.
文摘The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the primary pathway formed in the CO dissociation steps reacted with co-adsorbed hydrogen or carbon monoxide to produce H2O and CO2,respectively.The secondary pathway was the water-gas shift reaction.The results indicated that the CO2 production led to an increase in both primary and secondary pathways,and H2O production decreased when surface basicity of the catalyst increased in the order Ca 〉 Mg 〉 La.
文摘The detailed kinetics of Fischer-Tropsch synthesis over an industrial Fe/Cu/La/Si catalyst was studied in a continuous spinning basket re- actor under the conditions relevant to industrial operations. Reaction rate equations were derived on the basis of Langmuir-Hinshelwood- Hougen-Watson type models for Fischer-Tropsch synthesis based on possible reactions sets originated from the carbide, enolic and combined enol/carbide mechanisms. Kinetic model candidates were evaluated by the global optimization of kinetic parameters, which were realized by first minimization of multi-response objective functions with conventional Levenberg-Marquardt method. It was found that an enolic mech- anism based model could produce a good fit of the experimental data. The activation energy for paraffin formation is 95 kJ.mo1-1 which is smaller than that for olefin formation (121 kJ.mol-1).
基金The authors of this work appreciate the financial support of the Ferdowsi University of Mashhad,Iran(Grant No.3/45803-29/9/96).
文摘In this paper,a series of cobalt catalysts supported on reduced graphene oxide(rGO)nanosheets with the loading of 5,15 and 30 wt-%were provided by the impregnation method.The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis(FTS).The prepared catalysts were carefully characterized by nitrogen adsorption-desorption,hydrogen chemisorption,X-ray diffraction,Fourier transform infrared spectroscopy,Raman spectroscopy,temperature programmed reduction,transmission electron microscopy,and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets.The results showed that with increasing the cobalt loading on the rGO support,the carbon defects are increased and as a consequence,the reduction of cobalt is decreased.The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co0 average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size.The products selectivity results indicated that the methane selectivity decreases,whereas the C5+selectivity raises with the increasing of the cobalt particle size,which can be explained by chain propagation in the primary chain growth reactions.