High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev...High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.展开更多
Alloys of uranium and molybdenum are considered as the future of nuclear fuel and defense materials.However,surface corrosion is a fundamental problem in practical applications and storage.In this study,the static and...Alloys of uranium and molybdenum are considered as the future of nuclear fuel and defense materials.However,surface corrosion is a fundamental problem in practical applications and storage.In this study,the static and dynamic evolution of carbon monoxide(CO)adsorption and dissociation onγ-U(100)surface with different Mo doping levels was investigated based on density functional theory and ab initio molecular dynamics.During the static calculation phase,parameters,such as adsorption energy,configuration,and Bader charge,were evaluated at all adsorption sites.Furthermore,the time-dependent behavior of CO molecule adsorption were investigated at the most favorable sites.The minimum energy paths for CO molecu-lar dissociation and atom migration were investigated using the transition state search method.The results demonstrated that the CO on the uranium surface mainly manifests as chemical adsorption before dissociation of the CO molecule.The CO molecule exhibited a tendency to rotate and tilt upright adsorption.However,it is difficult for CO adsorption on the surface in one of the configurations with CO molecule in vertical direction but oxygen(O)is closer to the surface.Bader charge illustrates that the charge transfers from slab atoms to the 2π*antibonding orbital of CO molecule and particularly occurs in carbon(C)atoms.The time is less than 100 fs for the adsorptions that forms embryos with tilt upright in dynamics evolution.The density of states elucidates that the overlapping hybridization of C and O 2p orbitals is mainly formed via the d orbitals of uranium and molybdenum(Mo)atoms in the dissociation and re-adsorption of CO molecule.In conclusion,Mo doping of the surface can decelerate the adsorption and dissociation of CO molecules.A Mo-doped surface,created through ion injection,enhanced the resistance to uranium-induced surface corrosion.展开更多
The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performa...The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performance of HPGe must be further improved to achieve superior energy resolution,low noise,and long-term reliability.In this study,we combine computational simulations and experimental comparisons to deeply understand the passivation mechanism of Ge.The surface passivation effect is calculated and inferred from the band structure and density of interface states,and further con-firmed by the minority carrier lifetime.The first-principles method based on the density functional theory was adopted to systematically study the lattice structure,band structure,and density of state(DOS)of four different systems:Ge–H,Ge–Ge-NH 2,Ge-OH,and Ge-SiO_(x).The electronic char-acteristics of the Ge(100)unit cell with different passi-vation groups and Si/O atomic ratios were compared.This shows that H,N,and O atoms can effectively reduce the surface DOS of the Ge atoms.The passivation effect of the SiO_(x) group varied with increasing O atoms and Si/O atomic ratios.Experimentally,SiO and SiO_(2) passivation films were fabricated by electron beam evaporation on a Ge substrate,and the valence state of Si and resistivity was measured to characterize the film.The minority carrier lifetime of Ge-SiO_(2) is 21.3 ls,which is approximately quadruple that of Ge-SiO.The passivation effect and mechanism are discussed in terms of hopping conduction and surface defect density.This study builds a relationship between the passivation effect and different termination groups,and provides technical support for the potential passivation layer,which can be applied in Ge detectors with ultralow energy thresholds and especially in HPGe for rare-event physics detection experiments in future.展开更多
To understand the evolution of defects in SiC during irradiation and the influence of temperature,in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence(IBIL)meas...To understand the evolution of defects in SiC during irradiation and the influence of temperature,in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence(IBIL)measurement under2 MeV H^+ at 100 K,150 K,200 K,250 K,and 300 K.A wide band(400-1000 nm)was found in the spectra at all temperatures,and the intensity of the IBIL spectra was highest at 150 K among the five temperatures.A small peak from 400 nm to 500 nm was only observed at 100 K,related with the D1 defect as a donor-acceptor pair(D-A)recombination.For further understanding the luminescent centers and their evolution,the orange band(1.79 eV)and the green band(2.14 eV)in the energy spectrum were analyzed by Gaussian decomposition,maybe due to the donor-deep defect/conduction band-deep defect transitions and Ti related bound excition,respectively.Finally,a single exponential fit showed that when the temperature exceeded 150 K,the two luminescence centers’resistance to radiation was reduced.展开更多
Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for re...Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties.展开更多
The effects of annealing and irradiation on the evolution of Cu clusters in a-Fe are investigated using object kinetic Monte Carlo simulations.In our model,vacancies act as carriers for chemical species via thermally ...The effects of annealing and irradiation on the evolution of Cu clusters in a-Fe are investigated using object kinetic Monte Carlo simulations.In our model,vacancies act as carriers for chemical species via thermally activated diffusion jumps,thus playing an important role in solute diffusion.At the end of the Cu cluster evolution,the simulations of the average radius and number density of the clusters are consistent with the experimental data,which indicates that the proposed simulation model is applicable and effective.For the simulation of the annealing process,it is found that the evolution of the cluster size roughly follows the 1/2 time power law with the increase in radius during the growth phase and the 1/3 time power law during the coarsening phase.In addition,the main difference between neutron and ion irradiation is the growth and evolution process of the copper-vacancy clusters.The aggregation of vacancy clusters under ion irradiation suppresses the migration and coarsening of the clusters,which ultimately leads to a smaller average radius of the copper clusters.Our proposed simulation model can supplement experimental analyses and provide a detailed evolution mechanism of vacancy-enhanced precipitation,thereby providing a foundation for other elemental precipitation research.展开更多
Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to ...Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.展开更多
基金supported by the National Natural Science Foundation of China(No.12005017).
文摘High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.
基金supported by the National Natural Science Foundation of China (Nos.11975135 and 12005017)the National Basic Research Program of China (No.2020YFB1901800)
文摘Alloys of uranium and molybdenum are considered as the future of nuclear fuel and defense materials.However,surface corrosion is a fundamental problem in practical applications and storage.In this study,the static and dynamic evolution of carbon monoxide(CO)adsorption and dissociation onγ-U(100)surface with different Mo doping levels was investigated based on density functional theory and ab initio molecular dynamics.During the static calculation phase,parameters,such as adsorption energy,configuration,and Bader charge,were evaluated at all adsorption sites.Furthermore,the time-dependent behavior of CO molecule adsorption were investigated at the most favorable sites.The minimum energy paths for CO molecu-lar dissociation and atom migration were investigated using the transition state search method.The results demonstrated that the CO on the uranium surface mainly manifests as chemical adsorption before dissociation of the CO molecule.The CO molecule exhibited a tendency to rotate and tilt upright adsorption.However,it is difficult for CO adsorption on the surface in one of the configurations with CO molecule in vertical direction but oxygen(O)is closer to the surface.Bader charge illustrates that the charge transfers from slab atoms to the 2π*antibonding orbital of CO molecule and particularly occurs in carbon(C)atoms.The time is less than 100 fs for the adsorptions that forms embryos with tilt upright in dynamics evolution.The density of states elucidates that the overlapping hybridization of C and O 2p orbitals is mainly formed via the d orbitals of uranium and molybdenum(Mo)atoms in the dissociation and re-adsorption of CO molecule.In conclusion,Mo doping of the surface can decelerate the adsorption and dissociation of CO molecules.A Mo-doped surface,created through ion injection,enhanced the resistance to uranium-induced surface corrosion.
基金supported by the National Natural Science Foundation of China Youth Fund(No.12005017)。
文摘The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performance of HPGe must be further improved to achieve superior energy resolution,low noise,and long-term reliability.In this study,we combine computational simulations and experimental comparisons to deeply understand the passivation mechanism of Ge.The surface passivation effect is calculated and inferred from the band structure and density of interface states,and further con-firmed by the minority carrier lifetime.The first-principles method based on the density functional theory was adopted to systematically study the lattice structure,band structure,and density of state(DOS)of four different systems:Ge–H,Ge–Ge-NH 2,Ge-OH,and Ge-SiO_(x).The electronic char-acteristics of the Ge(100)unit cell with different passi-vation groups and Si/O atomic ratios were compared.This shows that H,N,and O atoms can effectively reduce the surface DOS of the Ge atoms.The passivation effect of the SiO_(x) group varied with increasing O atoms and Si/O atomic ratios.Experimentally,SiO and SiO_(2) passivation films were fabricated by electron beam evaporation on a Ge substrate,and the valence state of Si and resistivity was measured to characterize the film.The minority carrier lifetime of Ge-SiO_(2) is 21.3 ls,which is approximately quadruple that of Ge-SiO.The passivation effect and mechanism are discussed in terms of hopping conduction and surface defect density.This study builds a relationship between the passivation effect and different termination groups,and provides technical support for the potential passivation layer,which can be applied in Ge detectors with ultralow energy thresholds and especially in HPGe for rare-event physics detection experiments in future.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11905010)the Fundamental Research Funds for the Central Universities,China(Grant No.2018NTST04)+1 种基金the China Postdoctoral Science Foundation(Grant No.2019M650526)Guangdong Province Key Area R&D Program,China(Grant No.2019B090909002)。
文摘To understand the evolution of defects in SiC during irradiation and the influence of temperature,in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence(IBIL)measurement under2 MeV H^+ at 100 K,150 K,200 K,250 K,and 300 K.A wide band(400-1000 nm)was found in the spectra at all temperatures,and the intensity of the IBIL spectra was highest at 150 K among the five temperatures.A small peak from 400 nm to 500 nm was only observed at 100 K,related with the D1 defect as a donor-acceptor pair(D-A)recombination.For further understanding the luminescent centers and their evolution,the orange band(1.79 eV)and the green band(2.14 eV)in the energy spectrum were analyzed by Gaussian decomposition,maybe due to the donor-deep defect/conduction band-deep defect transitions and Ti related bound excition,respectively.Finally,a single exponential fit showed that when the temperature exceeded 150 K,the two luminescence centers’resistance to radiation was reduced.
基金supported by the National Natural Science Foundation of China(Nos.12141502 and 12005017).
文摘Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties.
基金supported by the National Natural Science Foundation of China (Nos.11975135 and 12005017)China Postdoctoral Science Foundation (No.2021M701829)
文摘The effects of annealing and irradiation on the evolution of Cu clusters in a-Fe are investigated using object kinetic Monte Carlo simulations.In our model,vacancies act as carriers for chemical species via thermally activated diffusion jumps,thus playing an important role in solute diffusion.At the end of the Cu cluster evolution,the simulations of the average radius and number density of the clusters are consistent with the experimental data,which indicates that the proposed simulation model is applicable and effective.For the simulation of the annealing process,it is found that the evolution of the cluster size roughly follows the 1/2 time power law with the increase in radius during the growth phase and the 1/3 time power law during the coarsening phase.In addition,the main difference between neutron and ion irradiation is the growth and evolution process of the copper-vacancy clusters.The aggregation of vacancy clusters under ion irradiation suppresses the migration and coarsening of the clusters,which ultimately leads to a smaller average radius of the copper clusters.Our proposed simulation model can supplement experimental analyses and provide a detailed evolution mechanism of vacancy-enhanced precipitation,thereby providing a foundation for other elemental precipitation research.
基金Project supported by the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant Nos.2017YFB0702201 and 2020YFB1901800)the National Natural Science Foundation of China(Grant Nos.11975135 and 12005017).
文摘Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance.