期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Model-based risk assessment on dynamic control of twin-column continuous capture under feedstock variations
1
作者 Yu Fan Liang-Zhi Qiao +1 位作者 shan-jing yao Dong-Qiang Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期22-30,共9页
Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous... Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area. 展开更多
关键词 Continuous chromatography Process control Feedstock variations Mechanistic modeling PURIFICATION
下载PDF
Raman spectroscopy as process analytical tool in downstream processing of biotechnology 被引量:2
2
作者 Yu Kiat Lin Hui Yi Leong +2 位作者 Tau Chuan Ling Dong-Qiang Lin shan-jing yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期204-211,共8页
Downstream processing or product recovery plays a vital role in the development of bioprocesses.To improve the bioprocess efficiency,some unconventional methods are much required.The continuous manufacturing in downst... Downstream processing or product recovery plays a vital role in the development of bioprocesses.To improve the bioprocess efficiency,some unconventional methods are much required.The continuous manufacturing in downstream processing makes the Process Analytical Technologies(PATs)as an important tool.Monitoring and controlling bioprocess are an essential factor for the principles of PAT and quality by design.Spectroscopic methods can apply to monitor multiple analytes in real-time with less sample processing with significant advancements.Raman spectroscopy is an extensively used technique as an analytical and research tool owing to its modest process form,non-destructive,non-invasive optical molecular spectroscopic imaging with computer-based analysis.Generally,its application is essential for the analysis and characterization of biological samples,and it is easy to operate with minimal sample.The innovation on various types of enhanced Raman spectroscopy was designed to enhance the Raman analytical technique.Raman spectroscopy could couple with chemometrics to provide reliable alternative analysis method of downstream process analysis.Thus,this review aims to provide useful insight on the application of Raman spectroscopy for PAT in downstream processing of biotechnology and Raman data analysis in biological fields. 展开更多
关键词 Raman spectroscopy Process analytical technology Downstream bioprocessing BIOTECHNOLOGY
下载PDF
Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems
3
作者 Hui Yi Leong Xiao-Qian Fu +2 位作者 Xiang-Yu Liu shan-jing yao Dong-Qiang Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期72-78,共7页
Infectious bursal disease(IBD)causes considerable economic losses in the commercial poultry industry worldwide.The principal way to control IBD virus(IBDV),the causative agent of IBD,is still through vaccination progr... Infectious bursal disease(IBD)causes considerable economic losses in the commercial poultry industry worldwide.The principal way to control IBD virus(IBDV),the causative agent of IBD,is still through vaccination programs.Virus-like particles(VLPs)are recognised as a safe and potent recombinant vaccine platform.This research work explores the characterisation and separation of infectious bursal disease virus-like particles(IBD-VLPs)from crude feedstock.Various characteristics were studied with highperformance size-exclusion chromatography(HP-SEC),sodium dodecyl sulphate–polyacrylamide gel electrophoresis(SDS-PAGE)and transmission electron microscopy(TEM)analyses.Subsequently,the separation of IBD-VLPs using polyethylene glycol(PEG)/sodium citrate-based aqueous two-phase systems(ATPSs)was conducted and optimised.Moreover,a scale-up study of the best ATPS constituted of 15%PEG 6000,11%sodium citrate and 10%crude feedstock was performed to compare the separation performance of IBD-VLPs with and without centrifugation-assisted.The results indicated that the optimised ATPS with centrifugation-assisted for both 5 g and 50 g systems showed good recovery of IBDVLPs of>97%in the interphase between the PEG-rich top and salt-rich bottom phases.These optimised systems also showed high removal efficiencies of impurities of>95%.The results demonstrated that aqueous two-phase extraction could be a promising technology for efficient VLPs separation. 展开更多
关键词 Aqueous two-phase extraction Infectious bursal disease virus POLYMERS SALT SEPARATION Virus-like particle
下载PDF
UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation
4
作者 Yu Kiat Lin Yan-Na Sun +3 位作者 Yu Fan Hui Yi Leong Dong-Qiang Lin shan-jing yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期230-235,共6页
Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopha... Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs. 展开更多
关键词 Affinity chromatography Host cell protein Monoclonal antibody Process analytical technology SPECTROSCOPY
下载PDF
Sodium cellulose sulfate: A promising biomaterial used for microcarriers' designing 被引量:4
5
作者 Qing-Xi Wu Yi-Xin Guan shan-jing yao 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第1期46-58,共13页
Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce glo... Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS's physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers' designing, such as microcell- carriers, micro-drug-carriers, etc., are presented. 展开更多
关键词 SODIUM CELLULOSE SULFATE biomaterial PHYSICOCHEMICAL properties MICROCARRIERS
原文传递
High production of β-glucosidase from a marine Aspergillus niger immobilized on towel gourd vegetable sponges 被引量:2
6
作者 Dong-Sheng Xue Jiang-Bo Wang shan-jing yao 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第8期1011-1015,共5页
To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immob... To produce β-glucosidase by consecutive batch fermentation, a marine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immobilized biomass percentage of over 95%. The immobilized mycelia possessed the long durability(22.5 days). The maximum production occurred 1.5 day earlier by the immobilized mycelia than by the free mycelia. β-Glucosidase production of five consecutive batches was over 110 U/m L. At high salinity,the activity and stability of β-glucosidase from the marine A. niger increased remarkable. Immobilizing the marine A. niger on the novel natural carrier achieved the efficient production of β-glucosidase. 展开更多
关键词 glucosidase niger vegetable batch durability earlier salinity biomass reserved producing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部