The microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg xZn 0.2Ca (x=0, 1.0, 2.0, 3.0) alloys were investigated in this study. Findings from scanning electron microscope, X-ray diffraction ...The microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg xZn 0.2Ca (x=0, 1.0, 2.0, 3.0) alloys were investigated in this study. Findings from scanning electron microscope, X-ray diffraction and transmission electron microscopy results indicate that the amount of ternary Ca2Mg6Zn3 phase, as the only secondary phase in 1.0Zn, 2.0Zn, and 3.0Zn alloys, gradually increases with the addition of Zn, while the Mg2Ca phase was observed in the Mg 0.2Ca alloy only. Zn has a strong effect on the orientation and intensity of textures, which also influence mechanical behaviors, as revealed by electron back-scatter diffraction. Among all the alloys, the Mg 2.0Zn 0.2Ca alloy obtains the maximum tensile strength (278 MPa) and yield strength (230 MPa). Moreover, Zn addition has an evident influence on the corrosion properties of Mg xZn 0.2Ca alloy, and Mg 1.0Zn 0.2Ca alloy exhibits the minimum corrosion rate. This paper provides a novel low-alloyed magnesium alloy as a potential biodegradable material.展开更多
T helper 17 (Th17) cells have both regulatory and protective roles in physiological conditions. The Th17 subset and the cytokine interleukin-17A (IL-17A) have been implicated in the pathogenesis of certain autoimm...T helper 17 (Th17) cells have both regulatory and protective roles in physiological conditions. The Th17 subset and the cytokine interleukin-17A (IL-17A) have been implicated in the pathogenesis of certain autoimmune diseases, several types of cancer and allograft rejection. However, the role of Th17 cells at the maternal/fetal interface remains unknown. Here, we demonstrate that Th17 cells are present in decidua and are increased in the peripheral blood of 10 clinically normal pregnancies based on intracellular cytokine analysis. Our results suggest a potential role of Th17 cells in sustaining pregnancy in humans. Furthermore, we demonstrate that decidual stromal cells (DSCs) but not trophoblast cells recruit peripheral Th17 cells into the decidua by secreting CCL2. The recruited Th17 cells promote proliferation and invasion and inhibit the apoptosis of human trophoblast cells by secreting IL-17 during the first trimester of pregnancy. These findings indicate a novel role for Th17 cells in controlling the maternal-fetal relationship and placenta development.展开更多
基金The Major State Research and Development Program of China (No. 2016YFB0300801)the National Natural Science Foundation of China (Nos. 51671017 and 51971020)+3 种基金the Fundamental Research Funds for the Central Universities (No. FRF-IC-19-010)Beijing Laboratory of Metallic Materials and Processing for Modern Transportationthe fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201835)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials (2018-Z04)
文摘The microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg xZn 0.2Ca (x=0, 1.0, 2.0, 3.0) alloys were investigated in this study. Findings from scanning electron microscope, X-ray diffraction and transmission electron microscopy results indicate that the amount of ternary Ca2Mg6Zn3 phase, as the only secondary phase in 1.0Zn, 2.0Zn, and 3.0Zn alloys, gradually increases with the addition of Zn, while the Mg2Ca phase was observed in the Mg 0.2Ca alloy only. Zn has a strong effect on the orientation and intensity of textures, which also influence mechanical behaviors, as revealed by electron back-scatter diffraction. Among all the alloys, the Mg 2.0Zn 0.2Ca alloy obtains the maximum tensile strength (278 MPa) and yield strength (230 MPa). Moreover, Zn addition has an evident influence on the corrosion properties of Mg xZn 0.2Ca alloy, and Mg 1.0Zn 0.2Ca alloy exhibits the minimum corrosion rate. This paper provides a novel low-alloyed magnesium alloy as a potential biodegradable material.
文摘T helper 17 (Th17) cells have both regulatory and protective roles in physiological conditions. The Th17 subset and the cytokine interleukin-17A (IL-17A) have been implicated in the pathogenesis of certain autoimmune diseases, several types of cancer and allograft rejection. However, the role of Th17 cells at the maternal/fetal interface remains unknown. Here, we demonstrate that Th17 cells are present in decidua and are increased in the peripheral blood of 10 clinically normal pregnancies based on intracellular cytokine analysis. Our results suggest a potential role of Th17 cells in sustaining pregnancy in humans. Furthermore, we demonstrate that decidual stromal cells (DSCs) but not trophoblast cells recruit peripheral Th17 cells into the decidua by secreting CCL2. The recruited Th17 cells promote proliferation and invasion and inhibit the apoptosis of human trophoblast cells by secreting IL-17 during the first trimester of pregnancy. These findings indicate a novel role for Th17 cells in controlling the maternal-fetal relationship and placenta development.