The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission...The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.展开更多
Multilayer interference mirrors play a pivotal role in spectroscopic diagnostic systems,which probe electron temperature and density during inertial confinement fusion processes.In this study,aperiodic Mo/B_(4)C multi...Multilayer interference mirrors play a pivotal role in spectroscopic diagnostic systems,which probe electron temperature and density during inertial confinement fusion processes.In this study,aperiodic Mo/B_(4)C multilayer mirrors of varied thick-nesses were investigated for X-ray plasma diagnostics at the 9.67-keV W-Lβline.The thickness distribution of the aperiodic multilayers was designed using the first Bragg diffraction condition and then optimized through a simplex algorithm to realize a narrow bandwidth and consistent spectral response.To enhance spectral accuracy,further refinements were undertaken by matching the grazing incidence X-ray reflectivity data with actual structural parameters.X-ray reflectivity measurements from the SSRF synchrotron radiation facility on the optimized sample showed a reflectivity of 29.7±2.6%,flat-band range of 1.3 keV,and bandwidth of 1.7 keV,making it suitable for high-temperature plasma diagnostics.The study explored the potential of predicting the 9.67 keV reflectivity spectrum using the fitting data from the grazing incidence X-ray reflectivity curves at 8.05 keV.Additionally,the short-term thermal stability of an aperiodic multilayer was assessed using temperature-dependent in situ X-ray measurements.Shifts in the reflectivity spectrum during annealing were attributed to interdiffusion and interfacial relaxation.The research team recommends the aperiodic Mo/B_(4)C multilayer mirror for operations below 300℃.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(No.YSBR-042)the National Natural Science Foundation of China(Nos.12125508,11935020)+1 种基金Program of Shanghai Academic/Technology Research Leader(No.21XD1404100)Shanghai Pilot Program for Basic Research–Chinese Academy of Science,Shanghai Branch(No.JCYJSHFY-2021-010).
文摘The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.11875204 and U1932167)Fundamental Research Funds for the Central Universities(Nos.22120210446 and 22120180070)the Presidential Foundation of China Academy of Engineering Physics(No.YZJJLX2019011).
文摘Multilayer interference mirrors play a pivotal role in spectroscopic diagnostic systems,which probe electron temperature and density during inertial confinement fusion processes.In this study,aperiodic Mo/B_(4)C multilayer mirrors of varied thick-nesses were investigated for X-ray plasma diagnostics at the 9.67-keV W-Lβline.The thickness distribution of the aperiodic multilayers was designed using the first Bragg diffraction condition and then optimized through a simplex algorithm to realize a narrow bandwidth and consistent spectral response.To enhance spectral accuracy,further refinements were undertaken by matching the grazing incidence X-ray reflectivity data with actual structural parameters.X-ray reflectivity measurements from the SSRF synchrotron radiation facility on the optimized sample showed a reflectivity of 29.7±2.6%,flat-band range of 1.3 keV,and bandwidth of 1.7 keV,making it suitable for high-temperature plasma diagnostics.The study explored the potential of predicting the 9.67 keV reflectivity spectrum using the fitting data from the grazing incidence X-ray reflectivity curves at 8.05 keV.Additionally,the short-term thermal stability of an aperiodic multilayer was assessed using temperature-dependent in situ X-ray measurements.Shifts in the reflectivity spectrum during annealing were attributed to interdiffusion and interfacial relaxation.The research team recommends the aperiodic Mo/B_(4)C multilayer mirror for operations below 300℃.