To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio...To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.展开更多
Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr...Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.展开更多
Li–O2 batteries have attracted significant interest in the past decade owing to their superior high specific energy density in contrast to conventional lithium ion batteries.An 8.7-Ah Li–O2 pouch cell with768.5 Wh k...Li–O2 batteries have attracted significant interest in the past decade owing to their superior high specific energy density in contrast to conventional lithium ion batteries.An 8.7-Ah Li–O2 pouch cell with768.5 Wh kg^-1 was fabricated and characterized in this investigation and the factors that influenced the electrochemical performance of the Li–O2 pouch cell were studied.In contrast to coin/Swagelok-type Li–O2 cells,it was demonstrated that the high-loading air electrode,pulverization of the Li anode,and the large-scale inhomogeneity of the large pouch cell are the major reasons for the failure of Li–O2 batteries with Ah capacities.In addition,safety tests of large Li–O2 pouch cells were conducted for the first time,including nail penetration,crushing,and thermal stability.It was indicated that a self-limiting mechanism is a key safety feature of these batteries,even when shorted.In this study,Li–O2 batteries were investigated in a new size and capacity-scale,which may provide useful insight into the development of practical pouch-type Li–O2 batteries.展开更多
All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrode...All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved.In addition,the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed.In this paper,the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed.The mechanical contact problems from phenomena to internal causes are also analyzed.Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode.The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material.The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction.An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge.Finally,the following recommendations are put forward to realize the development vision of high-nickel layered cathodes:(1)develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes;(2)elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes,clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials,and address the intrinsic safety issues;(3)strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries.展开更多
基金funded by the National Key Research and Development Program of China(2018YFB0104400)supported by the Beijing Natural Science Foundation(2214066)。
文摘To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC),Canada Research Chair Program(CRC),Canada Foundation for Innovation(CFI),Ontario Research Fund(ORF),China Automotive Battery Research Institute Co.,Ltd.,Glabat Solid-State Battery Inc.,Canada Light Source(CLS)at the University of Saskatchewan,Interdisciplinary Development Initiatives(IDI)by Western University,and University of Western Ontariothe support from Mitacs Accelerate Program(IT13735)the funding support from Banting Postdoctoral Fel owship(BPF—180162)
文摘Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.
基金supported by the Beijing Municipal Science and Technology Project(Grant No.Z181100004518003)GRINM Youth Foundation Funded Project(Contract No.QGL20190060 or Grant No.69963)。
文摘Li–O2 batteries have attracted significant interest in the past decade owing to their superior high specific energy density in contrast to conventional lithium ion batteries.An 8.7-Ah Li–O2 pouch cell with768.5 Wh kg^-1 was fabricated and characterized in this investigation and the factors that influenced the electrochemical performance of the Li–O2 pouch cell were studied.In contrast to coin/Swagelok-type Li–O2 cells,it was demonstrated that the high-loading air electrode,pulverization of the Li anode,and the large-scale inhomogeneity of the large pouch cell are the major reasons for the failure of Li–O2 batteries with Ah capacities.In addition,safety tests of large Li–O2 pouch cells were conducted for the first time,including nail penetration,crushing,and thermal stability.It was indicated that a self-limiting mechanism is a key safety feature of these batteries,even when shorted.In this study,Li–O2 batteries were investigated in a new size and capacity-scale,which may provide useful insight into the development of practical pouch-type Li–O2 batteries.
文摘All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved.In addition,the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed.In this paper,the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed.The mechanical contact problems from phenomena to internal causes are also analyzed.Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode.The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material.The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction.An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge.Finally,the following recommendations are put forward to realize the development vision of high-nickel layered cathodes:(1)develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes;(2)elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes,clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials,and address the intrinsic safety issues;(3)strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries.