Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation o...Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.展开更多
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How...Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.展开更多
Objective: To assess the clinical features, survival and prognostic factors of primary testicular diffuse large B-cell lymphoma (DLBCL). Methods: A retrospective study of 37 patients with primary testicular DLBCL ...Objective: To assess the clinical features, survival and prognostic factors of primary testicular diffuse large B-cell lymphoma (DLBCL). Methods: A retrospective study of 37 patients with primary testicular DLBCL was carried out from November 2003 to May 2012. Their clinical features, survival and prognostic factors were analyzed. Results: During a median follow-up period of 39.8 months (5.4-93.0 months), the median progression-free survival (PFS) was 26.2 months (95% CI:0-65 months) and the 3-year overall survival (OS) rate was 78.4%. Within the whole cohort, the factors significantly associated with a superior PFS were limited stage (stage Ⅰ/Ⅱ), lactate dehydrogenase (LDH) ≤245 U/L, international prognostic index (IPI) ≤1, primary tumor diameter 〈7.5 cm, and patients who had complete response (CR) and received doxoruhicin-contained chemotherapy (P〈0.05). There was a trend toward superior outcome for patients who received combined therapy (surgery/ chemotherapy/radiotherapy) (P=0.055). Patients who had CR, primary tumor diameter 〈7.5 cm and IPI score ≤1 were significantly associated with longer PFS at multivariate analysis. Conclusions: Primary testicular DLBCL had poorer survival. CR, primary tumor diameter and IPI were independent prognostic factors. The combined therapy of orchectomy, doxorubicin-contained chemotherapy and contralateral testicular radiotherapy (RT) seemed to improve survival.展开更多
Dihydroartemisinin(DHA),a first-line antimalarial drug,has demonstrated great anticancer effects in many types of tumors,including liver cancer,glioblastoma,and pancreatic cancer.Due to its abilities to induce program...Dihydroartemisinin(DHA),a first-line antimalarial drug,has demonstrated great anticancer effects in many types of tumors,including liver cancer,glioblastoma,and pancreatic cancer.Due to its abilities to induce programmed cell death(PCD;apoptosis,autophagy and ferroptosis),inhibit tumor metastasis and angiogenesis,and modulate the tumor microenvironment,DHA could become an antineoplastic agent in the foreseeable future.However,the therapeutic efficacy of DHA is compromised owing to its inherent disadvantages,including poor stability,low aqueous solubility,and short plasma halflife.To overcome these drawbacks,nanoscale drug delivery systems(NDDSs),such as polymeric nanoparticles(NPs),liposomes,and metal-organic frameworks(MOFs),have been introduced to maximize the therapeutic efficacy of DHA in either single-drug or multidrug therapy.Based on the beneficial properties of NDDSs,including enhanced stability and solubility of the drug,prolonged circulation time and selective accumulation in tumors,the outcomes of DHA-loaded NDDSs for cancer therapy are significantly improved compared to those of free DHA.This reviewfirst summarizes the current understanding of the anticancer mechanisms of DHA and then provides an overview of DHA-including nanomedicines,aiming to provide inspiration for further application of DHA as an anticancer drug.展开更多
Micro-optical electromechanical systems(MOEMS)combine the merits of micro-electromechanical systems(MEMS)and micro-optics to enable unique optical functions for a wide range of advanced applications.Using simple exter...Micro-optical electromechanical systems(MOEMS)combine the merits of micro-electromechanical systems(MEMS)and micro-optics to enable unique optical functions for a wide range of advanced applications.Using simple external electromechanical control methods,such as electrostatic,magnetic or thermal effects,Si-based MOEMS can achieve precise dynamic optical modulation.In this paper,we will briefly review the technologies and applications of Si-based MOEMS.Their basic working principles,advantages,general materials and micromachining fabrication technologies are introduced concisely,followed by research progress of advanced Si-based MOEMS devices,including micromirrors/micromirror arrays,micro-spectrometers,and optical/photonic switches.Owing to the unique advantages of Si-based MOEMS in spatial light modulation and high-speed signal processing,they have several promising applications in optical communications,digital light processing,and optical sensing.Finally,future research and development prospects of Si-based MOEMS are discussed.展开更多
Background: The role of rituximab in combination with CHOP regimen in patients with stage I diffuse large B-cell lymphoma (DLBCL) remains to be defined. We aimed to compare CHOP plus rituximab (R-CHOP) with CHOP ...Background: The role of rituximab in combination with CHOP regimen in patients with stage I diffuse large B-cell lymphoma (DLBCL) remains to be defined. We aimed to compare CHOP plus rituximab (R-CHOP) with CHOP alone and determine the value of radiotherapy in these patients. Methods: Between 2003 and 2009, 140 untreated patients with stage I DLBCL were retrospectively analyzed in this study. Results: Seventy-eight patients were treated in R-CHOP group and 62 in CHOP group. Ninety-one patients received additional radiotherapy at the end of chemotherapy. The different treatment groups were well-balanced with respect to baseline characteristics. Complete response (CR) rate was 77% both in R-CHOP and CHOP groups (P=0.945). After a median follow-up period of 56 months, patients received R-CHOP regimen had similar 5-year progression-free survival (PFS) (76% vs. 85%; log-rank P=0.215) and 5-year overall survival (OS) (90% vs. 96%; log-rank P=0.175) compared with those with CHOP alone. Patients with radiotherapy had significantly increased 5-year PFS compared with those who had chemotherapy alone (86% vs. 71%; log-rank P=0.005). At multivariate analysis, patients who had CR (P=0.008) and received radiotherapy (P=0.003) were significantly associated with superior PFS. Conclusions: CHOP alone could be as effective as R-CHOP regimen and additional radiotherapy would be necessary for stage I or stage I non-bulky DLBCL patients.展开更多
Is Cannabis a boon or bane?Cannabis sativa has long been a versatile crop for fiber extraction(industrial hemp),traditional Chinese medicine(hemp seeds),and recreational drugs(marijuana).Cannabis faced global prohibit...Is Cannabis a boon or bane?Cannabis sativa has long been a versatile crop for fiber extraction(industrial hemp),traditional Chinese medicine(hemp seeds),and recreational drugs(marijuana).Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of △^(9)-tetrahydrocannabinol;however,recently,the perspective has changed with the recognition of additional therapeutic values,particularly the pharmacological potential of cannabidiol.A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources.Here,we comprehensively review the historical usage of Cannabis,biosynthesis of trichome-specific cannabinoids,regulatory network of trichome development,and synthetic biology of cannabinoids.This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids,and the development and utilization of novel Cannabis varieties.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti...Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.展开更多
Mid-subtropical forests are the main vegetation type of global terrestrial biomes, and are critical for maintaining the global carbon balance. However, estimates of forest biomass increment in mid-subtropical forests ...Mid-subtropical forests are the main vegetation type of global terrestrial biomes, and are critical for maintaining the global carbon balance. However, estimates of forest biomass increment in mid-subtropical forests remain highly uncertain. It is critically important to determine the relative importance of different biotic and abiotic factors between plants and soil, particularly with respect to their influence on plant regrowth. Consequently,it is necessary to quantitatively characterize the dynamicspatiotemporal distribution of forest carbon sinks at a regional scale. This study used a large, long-term dataset in a boosted regression tree(BRT) model to determine the major components that quantitatively control forest biomass increments in a mid-subtropical forested region(Wuyishan National Nature Reserve, China). Long-term,stand-level data were used to derive the forest biomass increment, with the BRT model being applied to quantify the relative contributions of various biotic and abiotic variables to forest biomass increment. Our data show that total biomass(t) increased from 4.62 9 106 to 5.30 9 106 t between 1988 and 2010, and that the mean biomass increased from 80.19 ± 0.39 t ha-1(mean ± standard error) to 94.33 ± 0.41 t ha-1in the study region. The major factors that controlled biomass(in decreasing order of importance) were the stand, topography, and soil. Stand density was initially the most important stand factor, while elevation was the most important topographic factor. Soil factors were important for forest biomass increment but have a much weaker influence compared to the other two controlling factors. These results provide baseline information about the practical utility of spatial interpolationmethods for mapping forest biomass increments at regional scales.展开更多
Exploration of novel narrow bandgap semiconductors for overall water splitting is vital for the realization of practical solar H2 production. In the work, solid solutions of zinc selenide and copper gallium selenide w...Exploration of novel narrow bandgap semiconductors for overall water splitting is vital for the realization of practical solar H2 production. In the work, solid solutions of zinc selenide and copper gallium selenide with absorption edge wavelengths ranging from 480 to 730 nm were developed. Using these metal selenides as H2-evolving photocatalysts, CoOx/BiVO4 as the O2-evolving photocatalyst, and reduced graphene oxide as the electron mediator, all-solid-state Z-scheme overall pure water splitting systems were constructed. The rate of photocatalytic H2 evolution from aqueous solutions containing Na2S and Na2SO3 as the electron donors was evaluated while employing these selenide photocatalysts at various Zn/(Zn+Cu) and Ga/Cu molar ratios. The data demonstrate that efficient Z-scheme overall water splitting was significantly correlated to the photoelectrochemical performance of the selenide photocatalysts acting as photocathodes, rather than the photocatalytic activities of these materials during the sacrificial H2 evolution.展开更多
Objective: Chemotherapy with paclitaxel is associated with significant neurotoxicity that may offset patients' quality of life and therapeutic benefits. This prospective, non-randomized control study evaluated the e...Objective: Chemotherapy with paclitaxel is associated with significant neurotoxicity that may offset patients' quality of life and therapeutic benefits. This prospective, non-randomized control study evaluated the efficacy and safety of an antidepressant drug, duloxetine, at 30 or 60 mg/d, in the treatment of paclitaxel-induced peripheral neuropathy(PIPN) in Chinese breast cancer patients.Methods:A total of 102 patients with a median age of 50(range,25–60)years,treated in the Department of Medical Oncology,National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,between November 2014 and January 2017 were finally enrolled.Stratified by baseline characteristics,the patients were classified into two groups,receiving either duloxetine or alternative antineurotoxicity drugs.During the course of the paclitaxel regimen,the eligibility criteria included sensory neuropathy,as evaluated by the National Cancer Institute-Common Toxicity Criteria for Adverse Events.The treatment consisted of receiving 30 mg duloxetine(for the first 4 weeks)and 60 mg duloxetine for an additional 8 weeks,or any other anti-neurotoxicity drug daily during the same crossover period.The improvement associated with PIPN from the patient’s perspective were assessed by the Functional Assessment of Cancer Therapy-Taxane(FACT-Tax)Scales,which contained questions scored from 0 to 4(0,not at all;4,very much;total score range,0–44).Results:Duloxetine was more effective in decreasing PIPN(odds ratio=5.426;95%confidence interval,1.898–15.514;P=0.002).Between duloxetine group and control group,the median(25th–75th percentiles)decreasing difference in the FACT-Tax pain score was 4(2–6)vs.1(0–4)(P=0.005).Conclusions:Duloxetine is a promising and safe option with tolerable toxicity at a dose of 60 mg/d for Chinese breast cancer patients with PIPN.Non-neuropathy adverse events were mild and similar in both groups.The major toxicities of duloxetine included nausea,constipation,somnolence,dizziness and distention of the eyes.Further examination of the benefits of duloxetine in the prevention of PIPN is required.展开更多
On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in m...On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.展开更多
Latitudinal permafrost in Northern Northeast(NNE)China is located in the southern margin of the Eurasian continent,and is very sensitive to climatic and environmental change.Numerical simulations indicate that air tem...Latitudinal permafrost in Northern Northeast(NNE)China is located in the southern margin of the Eurasian continent,and is very sensitive to climatic and environmental change.Numerical simulations indicate that air temperature in the permafrost regions of Northeast China has been on the rise since the 1950s,and will keep rising in the 21st century,leading to extensive degradation of permafrost.Permafrost degradation in NNE China has its own characteristics,such as northward shifts in the shape of a"W"for the permafrost southern boundary(SLP),discontinuous permafrost degradation into islandlike frozen soil,and gradually disappearing island permafrost.Permafrost degradation leads to deterioration of the ecological environment in cold regions.As a result,the belt of larch forests dominated by Larix gmelinii has shifted northwards and wetland areas with symbiotic relationships with permafrost have decreased significantly.With rapid retreat and thinning of permafrost and vegetation change,the CO2 and CH4 flux increases with mean air temperature from continuous to sporadic permafrost areas as a result of activity of methanogen enhancement,positively feeding back to climate warming.This paper reviews the features of permafrost degradation,the effects of permafrost degradation on wetland and forest ecosystem structure and function,and greenhouse gas emissions on latitudinal permafrost in NNE China.We also put forward critical questions about the aforementioned effects,including:(1)establish long-term permafrost observation systems to evaluate the distribution of permafrost and SLP change,in order to study the feedback of permafrost to climate change;(2)carry out research about the effects of permafrost degradation on the wetland ecosystem and the response of Xing'an larch to global change,and predict ecosystem dynamics in permafrost degradation based on long-term field observation;(3)focus intensively on the dynamics of greenhouse gas flux in permafrost degradation of Northeast China and the feedback of greenhouse gas emissions to climate change;(4)quantitative studies on the permafrost carbon feedback and vegetation carbon feedback due to permafrost change to climate multi-impact and estimate the balance of C in permafrost regions in the future.展开更多
The analysis of NMR data in terms of inversion of relaxation distribution is hampered by the ill-posed nature of the required solution about the Fredholm integral equation. Naive approaches such as multi-exponential f...The analysis of NMR data in terms of inversion of relaxation distribution is hampered by the ill-posed nature of the required solution about the Fredholm integral equation. Naive approaches such as multi-exponential fitting or standard least-squares algorithms are numerically unstable and often failed. This paper updates the application of Tikhonov regularization to stabilize this numerical inversion problem and demonstrates the method for automatically choosing the optimal value of the regularization parameter. The approach is computationally efficient and easy to implement using standard matrix algebra techniques, which is based on mathematical ware MATLAB. Example analyses arepresented using both synthetic data and experimental results of NMR studies on the liquid samples like as oils and yoghurt.展开更多
文摘Perovskite SrTaO_(2)N is one of the most promising narrow-bandgap photocatalysts for Z-scheme overall water splitting.However,the formation of defect states during thermal nitridation severely hinders the separation of charges,resulting in poor photocatalytic activity.In the present study,we successfully synthesize SrTaO_(2)N photocatalyst with low density of defect states,uniform morphology and particle size by flux-assisted one-pot nitridation combined with Mg doping.Some important parameters,such as the size of unit cell,the content of nitrogen,and microstructure,prove the successful doping of Mg.The defect-related carrier recombination has been significantly reduced by Mg doping,which effectively promotes the charge separation.Moreover,Mg doping induces a change of the band edge,which makes proton reduction have a stronger driving force.After modifying with the core/shell-structured Pt/Cr_(2)O_(3)cocatalyst,the H_(2)evolution activity of the optimized SrTaO_(2)N:Mg is 10 times that of the undoped SrTaO_(2)N,with an impressive apparent quantum yield of 1.51%at 420 nm.By coupling with Au-FeCoO_(x)modified BiVO_(4)as an O_(2)-evolution photocatalyst and[Fe(CN)_(6)]_(3)−/[Fe(CN)_(6)]_(4)−as the redox couple,a redox-based Z-scheme overall water splitting system is successfully constructed with an apparent quantum yield of 1.36%at 420 nm.This work provides an alternative way to prepare oxynitride semiconductors with reduced defects to promote the conversion of solar energy.
基金supported by the National Natural Science Foundation of China(21872104,21501131,21978216 and 22272082)the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the Analytical&Testing Center of Tiangong University for PL work。
文摘Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.
文摘Objective: To assess the clinical features, survival and prognostic factors of primary testicular diffuse large B-cell lymphoma (DLBCL). Methods: A retrospective study of 37 patients with primary testicular DLBCL was carried out from November 2003 to May 2012. Their clinical features, survival and prognostic factors were analyzed. Results: During a median follow-up period of 39.8 months (5.4-93.0 months), the median progression-free survival (PFS) was 26.2 months (95% CI:0-65 months) and the 3-year overall survival (OS) rate was 78.4%. Within the whole cohort, the factors significantly associated with a superior PFS were limited stage (stage Ⅰ/Ⅱ), lactate dehydrogenase (LDH) ≤245 U/L, international prognostic index (IPI) ≤1, primary tumor diameter 〈7.5 cm, and patients who had complete response (CR) and received doxoruhicin-contained chemotherapy (P〈0.05). There was a trend toward superior outcome for patients who received combined therapy (surgery/ chemotherapy/radiotherapy) (P=0.055). Patients who had CR, primary tumor diameter 〈7.5 cm and IPI score ≤1 were significantly associated with longer PFS at multivariate analysis. Conclusions: Primary testicular DLBCL had poorer survival. CR, primary tumor diameter and IPI were independent prognostic factors. The combined therapy of orchectomy, doxorubicin-contained chemotherapy and contralateral testicular radiotherapy (RT) seemed to improve survival.
基金supported by the National Natural Science Foundation of China[51922111]the Science and Technology Development Fund,Macao SAR[File no.0124/2019/A3]Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials[2019B121205002].
文摘Dihydroartemisinin(DHA),a first-line antimalarial drug,has demonstrated great anticancer effects in many types of tumors,including liver cancer,glioblastoma,and pancreatic cancer.Due to its abilities to induce programmed cell death(PCD;apoptosis,autophagy and ferroptosis),inhibit tumor metastasis and angiogenesis,and modulate the tumor microenvironment,DHA could become an antineoplastic agent in the foreseeable future.However,the therapeutic efficacy of DHA is compromised owing to its inherent disadvantages,including poor stability,low aqueous solubility,and short plasma halflife.To overcome these drawbacks,nanoscale drug delivery systems(NDDSs),such as polymeric nanoparticles(NPs),liposomes,and metal-organic frameworks(MOFs),have been introduced to maximize the therapeutic efficacy of DHA in either single-drug or multidrug therapy.Based on the beneficial properties of NDDSs,including enhanced stability and solubility of the drug,prolonged circulation time and selective accumulation in tumors,the outcomes of DHA-loaded NDDSs for cancer therapy are significantly improved compared to those of free DHA.This reviewfirst summarizes the current understanding of the anticancer mechanisms of DHA and then provides an overview of DHA-including nanomedicines,aiming to provide inspiration for further application of DHA as an anticancer drug.
基金supported by the National Natural Science Foundation of China under Grant No.61975016the Science and Technology Project of Guangdong(2020B010190001)+2 种基金Natural Science Foundation of Beijing Municipality(1212013 and Z190006)Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z211100004821009Cultivation Project for Basic Research and Innovation of Yanshan University No.2021LGQN021.
文摘Micro-optical electromechanical systems(MOEMS)combine the merits of micro-electromechanical systems(MEMS)and micro-optics to enable unique optical functions for a wide range of advanced applications.Using simple external electromechanical control methods,such as electrostatic,magnetic or thermal effects,Si-based MOEMS can achieve precise dynamic optical modulation.In this paper,we will briefly review the technologies and applications of Si-based MOEMS.Their basic working principles,advantages,general materials and micromachining fabrication technologies are introduced concisely,followed by research progress of advanced Si-based MOEMS devices,including micromirrors/micromirror arrays,micro-spectrometers,and optical/photonic switches.Owing to the unique advantages of Si-based MOEMS in spatial light modulation and high-speed signal processing,they have several promising applications in optical communications,digital light processing,and optical sensing.Finally,future research and development prospects of Si-based MOEMS are discussed.
基金Departments of Medical Oncology and Radiation Oncology for study collaborationDepartment of Medical Record Library for medical record provisionthank Chinese Society of Clinical Oncology(CSCO) for partial financial support
文摘Background: The role of rituximab in combination with CHOP regimen in patients with stage I diffuse large B-cell lymphoma (DLBCL) remains to be defined. We aimed to compare CHOP plus rituximab (R-CHOP) with CHOP alone and determine the value of radiotherapy in these patients. Methods: Between 2003 and 2009, 140 untreated patients with stage I DLBCL were retrospectively analyzed in this study. Results: Seventy-eight patients were treated in R-CHOP group and 62 in CHOP group. Ninety-one patients received additional radiotherapy at the end of chemotherapy. The different treatment groups were well-balanced with respect to baseline characteristics. Complete response (CR) rate was 77% both in R-CHOP and CHOP groups (P=0.945). After a median follow-up period of 56 months, patients received R-CHOP regimen had similar 5-year progression-free survival (PFS) (76% vs. 85%; log-rank P=0.215) and 5-year overall survival (OS) (90% vs. 96%; log-rank P=0.175) compared with those with CHOP alone. Patients with radiotherapy had significantly increased 5-year PFS compared with those who had chemotherapy alone (86% vs. 71%; log-rank P=0.005). At multivariate analysis, patients who had CR (P=0.008) and received radiotherapy (P=0.003) were significantly associated with superior PFS. Conclusions: CHOP alone could be as effective as R-CHOP regimen and additional radiotherapy would be necessary for stage I or stage I non-bulky DLBCL patients.
基金supported by the National Natural Science Foundation of China(82204579)the Fundamental Research Funds for the Central Universities(2572022DX06)+1 种基金the Scientific and Technological Innovation Project of China Academy of Chinese Medical Science(CI2021A04113)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team).
文摘Is Cannabis a boon or bane?Cannabis sativa has long been a versatile crop for fiber extraction(industrial hemp),traditional Chinese medicine(hemp seeds),and recreational drugs(marijuana).Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of △^(9)-tetrahydrocannabinol;however,recently,the perspective has changed with the recognition of additional therapeutic values,particularly the pharmacological potential of cannabidiol.A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources.Here,we comprehensively review the historical usage of Cannabis,biosynthesis of trichome-specific cannabinoids,regulatory network of trichome development,and synthetic biology of cannabinoids.This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids,and the development and utilization of novel Cannabis varieties.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金financially supported by research grants from the Natural Science Foundation of China [Grant No. 62074022 (K.S.), 12004057 (Y.J.Z.), 52173235 (M.L.)]the Natural Science Foundation of Chongqing [cstc2021jcyj-jqX0015 (K.S.)]+3 种基金Chongqing Talent Plan [cstc2021ycjh-bgzxm0334 (S.S.C.), CQYC2021059206 (K.S.)]Fundamental Research Funds for the Central Universities [No. 2020CDJQY-A055 (K.S.)]the Key Laboratory of Low-grade Energy Utilization Technologies and Systems [Grant No. LLEUTS-201901 (K.S.)]support from Chongqing Postgraduate Research and Innovation Project (CYS22032)。
文摘Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.
基金supported by National Forestry Public Welfare Foundation of China(201304205)National Science Foundation of China(31470578 and 31200363)+2 种基金Fujian Provincial Department of S&T Project(2016Y0083,2013YZ0001-1,2014J05044 and 2015Y0083)Xiamen Municipal Department of Science and Technology(3502Z20130037 and 3502Z20142016)Youth Innovation Promotion Association CAS
文摘Mid-subtropical forests are the main vegetation type of global terrestrial biomes, and are critical for maintaining the global carbon balance. However, estimates of forest biomass increment in mid-subtropical forests remain highly uncertain. It is critically important to determine the relative importance of different biotic and abiotic factors between plants and soil, particularly with respect to their influence on plant regrowth. Consequently,it is necessary to quantitatively characterize the dynamicspatiotemporal distribution of forest carbon sinks at a regional scale. This study used a large, long-term dataset in a boosted regression tree(BRT) model to determine the major components that quantitatively control forest biomass increments in a mid-subtropical forested region(Wuyishan National Nature Reserve, China). Long-term,stand-level data were used to derive the forest biomass increment, with the BRT model being applied to quantify the relative contributions of various biotic and abiotic variables to forest biomass increment. Our data show that total biomass(t) increased from 4.62 9 106 to 5.30 9 106 t between 1988 and 2010, and that the mean biomass increased from 80.19 ± 0.39 t ha-1(mean ± standard error) to 94.33 ± 0.41 t ha-1in the study region. The major factors that controlled biomass(in decreasing order of importance) were the stand, topography, and soil. Stand density was initially the most important stand factor, while elevation was the most important topographic factor. Soil factors were important for forest biomass increment but have a much weaker influence compared to the other two controlling factors. These results provide baseline information about the practical utility of spatial interpolationmethods for mapping forest biomass increments at regional scales.
基金financially supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO) and Grant-in-Aids for Scientific Research(A)(No.16H02417)Young Scientists(A)(No.15H05494)from the Japan Society for the Promotion of Science(JSPS)
文摘Exploration of novel narrow bandgap semiconductors for overall water splitting is vital for the realization of practical solar H2 production. In the work, solid solutions of zinc selenide and copper gallium selenide with absorption edge wavelengths ranging from 480 to 730 nm were developed. Using these metal selenides as H2-evolving photocatalysts, CoOx/BiVO4 as the O2-evolving photocatalyst, and reduced graphene oxide as the electron mediator, all-solid-state Z-scheme overall pure water splitting systems were constructed. The rate of photocatalytic H2 evolution from aqueous solutions containing Na2S and Na2SO3 as the electron donors was evaluated while employing these selenide photocatalysts at various Zn/(Zn+Cu) and Ga/Cu molar ratios. The data demonstrate that efficient Z-scheme overall water splitting was significantly correlated to the photoelectrochemical performance of the selenide photocatalysts acting as photocathodes, rather than the photocatalytic activities of these materials during the sacrificial H2 evolution.
文摘Objective: Chemotherapy with paclitaxel is associated with significant neurotoxicity that may offset patients' quality of life and therapeutic benefits. This prospective, non-randomized control study evaluated the efficacy and safety of an antidepressant drug, duloxetine, at 30 or 60 mg/d, in the treatment of paclitaxel-induced peripheral neuropathy(PIPN) in Chinese breast cancer patients.Methods:A total of 102 patients with a median age of 50(range,25–60)years,treated in the Department of Medical Oncology,National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,between November 2014 and January 2017 were finally enrolled.Stratified by baseline characteristics,the patients were classified into two groups,receiving either duloxetine or alternative antineurotoxicity drugs.During the course of the paclitaxel regimen,the eligibility criteria included sensory neuropathy,as evaluated by the National Cancer Institute-Common Toxicity Criteria for Adverse Events.The treatment consisted of receiving 30 mg duloxetine(for the first 4 weeks)and 60 mg duloxetine for an additional 8 weeks,or any other anti-neurotoxicity drug daily during the same crossover period.The improvement associated with PIPN from the patient’s perspective were assessed by the Functional Assessment of Cancer Therapy-Taxane(FACT-Tax)Scales,which contained questions scored from 0 to 4(0,not at all;4,very much;total score range,0–44).Results:Duloxetine was more effective in decreasing PIPN(odds ratio=5.426;95%confidence interval,1.898–15.514;P=0.002).Between duloxetine group and control group,the median(25th–75th percentiles)decreasing difference in the FACT-Tax pain score was 4(2–6)vs.1(0–4)(P=0.005).Conclusions:Duloxetine is a promising and safe option with tolerable toxicity at a dose of 60 mg/d for Chinese breast cancer patients with PIPN.Non-neuropathy adverse events were mild and similar in both groups.The major toxicities of duloxetine included nausea,constipation,somnolence,dizziness and distention of the eyes.Further examination of the benefits of duloxetine in the prevention of PIPN is required.
基金the National Natural Science Foundation of People’s Republic of China(Grant Nos.U1703262 and 62163035)the Special Project for Local Science and Technology Development Guided by the Central Government(Grant No.ZYYD2022A05)Xinjiang Key Laboratory of Applied Mathematics(Grant No.XJDX1401)。
文摘On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.
基金supported by the National Natural Science Foundation of China(No.41571199)
文摘Latitudinal permafrost in Northern Northeast(NNE)China is located in the southern margin of the Eurasian continent,and is very sensitive to climatic and environmental change.Numerical simulations indicate that air temperature in the permafrost regions of Northeast China has been on the rise since the 1950s,and will keep rising in the 21st century,leading to extensive degradation of permafrost.Permafrost degradation in NNE China has its own characteristics,such as northward shifts in the shape of a"W"for the permafrost southern boundary(SLP),discontinuous permafrost degradation into islandlike frozen soil,and gradually disappearing island permafrost.Permafrost degradation leads to deterioration of the ecological environment in cold regions.As a result,the belt of larch forests dominated by Larix gmelinii has shifted northwards and wetland areas with symbiotic relationships with permafrost have decreased significantly.With rapid retreat and thinning of permafrost and vegetation change,the CO2 and CH4 flux increases with mean air temperature from continuous to sporadic permafrost areas as a result of activity of methanogen enhancement,positively feeding back to climate warming.This paper reviews the features of permafrost degradation,the effects of permafrost degradation on wetland and forest ecosystem structure and function,and greenhouse gas emissions on latitudinal permafrost in NNE China.We also put forward critical questions about the aforementioned effects,including:(1)establish long-term permafrost observation systems to evaluate the distribution of permafrost and SLP change,in order to study the feedback of permafrost to climate change;(2)carry out research about the effects of permafrost degradation on the wetland ecosystem and the response of Xing'an larch to global change,and predict ecosystem dynamics in permafrost degradation based on long-term field observation;(3)focus intensively on the dynamics of greenhouse gas flux in permafrost degradation of Northeast China and the feedback of greenhouse gas emissions to climate change;(4)quantitative studies on the permafrost carbon feedback and vegetation carbon feedback due to permafrost change to climate multi-impact and estimate the balance of C in permafrost regions in the future.
文摘The analysis of NMR data in terms of inversion of relaxation distribution is hampered by the ill-posed nature of the required solution about the Fredholm integral equation. Naive approaches such as multi-exponential fitting or standard least-squares algorithms are numerically unstable and often failed. This paper updates the application of Tikhonov regularization to stabilize this numerical inversion problem and demonstrates the method for automatically choosing the optimal value of the regularization parameter. The approach is computationally efficient and easy to implement using standard matrix algebra techniques, which is based on mathematical ware MATLAB. Example analyses arepresented using both synthetic data and experimental results of NMR studies on the liquid samples like as oils and yoghurt.