Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional p...Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.展开更多
To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage(C-V)characterization of organic thin films when current injection is significant,a three-element equivalent cir...To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage(C-V)characterization of organic thin films when current injection is significant,a three-element equivalent circuit model is proposed.On this basis,the expression of real capacitance in consideration of current injection is theoretically derived by small-signal analysis method.The validity of the proposed equivalent circuit and theoretical expression are verified by a simulating circuit consisting of a capacitor,a diode,and a resistor.Moreover,the accurate C-V characteristic of an organic thin film device is obtained via theoretical correction of the experimental measuring result,and the real capacitance is 35.7%higher than the directly measured capacitance at 5-V bias in the parallel mode.This work strongly demonstrates the necessity to consider current injection in C-V measurement and provides a strategy for accurate C-V characterization experimentally.展开更多
We report the structural and electrical transport properties of Fe1-xCuxSe(x=0,0.02,0.05,0.10)single crystals grown by a chemical vapor transport method.Substituting Cu for Fe suppresses both the nematicity and superc...We report the structural and electrical transport properties of Fe1-xCuxSe(x=0,0.02,0.05,0.10)single crystals grown by a chemical vapor transport method.Substituting Cu for Fe suppresses both the nematicity and superconductivity of FeSe single crystal,and provokes a metal–insulator transition.Our Hall measurements show that the Cu substitution also changes an electron dominance at low temperature of un-doped Fe Se to a hole dominance of Cu-doped Fe1-xCuxSe at x=0.02 and 0.1,and reduces the sign-change temperature(TR)of the Hall coefficient(RH).展开更多
基金jointly funded by projects supported by the National Natural Science Foundation of China(Grant No.41872150)the Joint Funds of the National Natural Science Foundation of China(Grant No.U19B6003)Major Scientific and Technological Projects of CNPC during the 13th five-year plan(No.2019A-02-10)。
文摘Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874007 and 12074076).
文摘To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage(C-V)characterization of organic thin films when current injection is significant,a three-element equivalent circuit model is proposed.On this basis,the expression of real capacitance in consideration of current injection is theoretically derived by small-signal analysis method.The validity of the proposed equivalent circuit and theoretical expression are verified by a simulating circuit consisting of a capacitor,a diode,and a resistor.Moreover,the accurate C-V characteristic of an organic thin film device is obtained via theoretical correction of the experimental measuring result,and the real capacitance is 35.7%higher than the directly measured capacitance at 5-V bias in the parallel mode.This work strongly demonstrates the necessity to consider current injection in C-V measurement and provides a strategy for accurate C-V characterization experimentally.
基金Project supported by the National Key Research and Development of China(Grant No.2018YFA0704200)the National Natural Science Foundation of China(Grant No.11834016)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000)。
文摘We report the structural and electrical transport properties of Fe1-xCuxSe(x=0,0.02,0.05,0.10)single crystals grown by a chemical vapor transport method.Substituting Cu for Fe suppresses both the nematicity and superconductivity of FeSe single crystal,and provokes a metal–insulator transition.Our Hall measurements show that the Cu substitution also changes an electron dominance at low temperature of un-doped Fe Se to a hole dominance of Cu-doped Fe1-xCuxSe at x=0.02 and 0.1,and reduces the sign-change temperature(TR)of the Hall coefficient(RH).