Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivi...Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.展开更多
Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to ev...Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.展开更多
Stimuli-triggered release and alleviating resistance of iridium(Ⅲ)-based drugs at tumor sites remains challengeable for clinical hepatoma therapy.Herein,a doxorubicin@iridium-transferrin(DOX@Ir-TF)nanovesicle was syn...Stimuli-triggered release and alleviating resistance of iridium(Ⅲ)-based drugs at tumor sites remains challengeable for clinical hepatoma therapy.Herein,a doxorubicin@iridium-transferrin(DOX@Ir-TF)nanovesicle was synthesized by carboxylated-transferrin(TF)and doxorubicin-loaded amphiphilic iridium-amino with quaternary ammonium(QA)groups and disulfide bonds.The QA groups enhanced photophysical properties and broadened production capacity of photoinduced-reactive oxygen species(ROS),while the disulfide-bridged bonds regulated oxidative stress levels through reacting with glutathione(GSH);simultaneously,modification of TF improved recognition and endocytosis of the nanovesicle for tumor cells.Based on in-vitro results,a controlled-release behavior of DOX upon a dualresponsiveness of GSH and near-infrared ray(NIR)irradiation was presented,along with high-efficiency generation of ROS.After an intravenous injection,the nanovesicle was targeted at tumor sites,realizing TF-navigated photoacoustic imaging guidance and synergistic chemotherapy-photodynamic therapy under NIR/GSH stimulations.Overall,newly-synthesized DOX@Ir-TF nanovesicle provided a potential in subcutaneous hepatocellular carcinoma therapy due to integrations of targeting delivery,dual-stimuli responsive release,synergistic therapy strategy,and real-time monitoring.展开更多
In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesio...In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesion,and low mechanical properties.Herein,a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property(308.47±29.20 kPa)and excellent hemostatic efficiency(96.5%±2.1%)was constructed as a hemostatic sealant.Typically,we combined chitosan(CS)with silk fibroin(SF)by cross-linking them through tannic acid(TA)to maintain the structural stability of the hydrogel,especially for wet tissue adhesion ability(shear adhesive strength=29.66±0.36 kPa).Compared with other materials reported previously,the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models,which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS.As a superior hemostatic sealant,the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.展开更多
基金the National Natural Science Foundation of China (No. 22136005)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).
文摘Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.
基金supported by grants from the Innovation and Cultivation Fund Project of the Seventh Medical Center,PLA General Hospital(No.QZX-2023-7)Postdoctoral Science Foundation of China(No.2021M691649)Postdoctoral Science Foundation of Jiangsu Province(No.2021K524C).
文摘Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.
基金supported by the National Key R&D Program of China(Nos.2022YFB3808000,2022YFB3808001)the Project for High-Level Talent Innovation and Entrepreneurship of Quanzhou(No.2022C016R)+1 种基金the Medical Innovation Project of Science and Technology Program of Fujian Provincial Health Commission(No.2021CXA006)the Key Program of Qingyuan Innovation Laboratory(No.00221002).
文摘Stimuli-triggered release and alleviating resistance of iridium(Ⅲ)-based drugs at tumor sites remains challengeable for clinical hepatoma therapy.Herein,a doxorubicin@iridium-transferrin(DOX@Ir-TF)nanovesicle was synthesized by carboxylated-transferrin(TF)and doxorubicin-loaded amphiphilic iridium-amino with quaternary ammonium(QA)groups and disulfide bonds.The QA groups enhanced photophysical properties and broadened production capacity of photoinduced-reactive oxygen species(ROS),while the disulfide-bridged bonds regulated oxidative stress levels through reacting with glutathione(GSH);simultaneously,modification of TF improved recognition and endocytosis of the nanovesicle for tumor cells.Based on in-vitro results,a controlled-release behavior of DOX upon a dualresponsiveness of GSH and near-infrared ray(NIR)irradiation was presented,along with high-efficiency generation of ROS.After an intravenous injection,the nanovesicle was targeted at tumor sites,realizing TF-navigated photoacoustic imaging guidance and synergistic chemotherapy-photodynamic therapy under NIR/GSH stimulations.Overall,newly-synthesized DOX@Ir-TF nanovesicle provided a potential in subcutaneous hepatocellular carcinoma therapy due to integrations of targeting delivery,dual-stimuli responsive release,synergistic therapy strategy,and real-time monitoring.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No 51903050)the Natural Science Foundation of Fujian Province(Grant No.2019J01258)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University,Grant No.sklpme2019-4-34)the Key Program of Qingyuan Innovation Laboratory(Grant No.00221002)the Fuzhou University Testing Fund of Precious Apparatus(Grant No.2021T025).
文摘In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesion,and low mechanical properties.Herein,a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property(308.47±29.20 kPa)and excellent hemostatic efficiency(96.5%±2.1%)was constructed as a hemostatic sealant.Typically,we combined chitosan(CS)with silk fibroin(SF)by cross-linking them through tannic acid(TA)to maintain the structural stability of the hydrogel,especially for wet tissue adhesion ability(shear adhesive strength=29.66±0.36 kPa).Compared with other materials reported previously,the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models,which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS.As a superior hemostatic sealant,the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.