Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipat...Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.展开更多
A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylben...A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures.展开更多
Understanding the seven coordination and O-O coupling pathway of the distinguished Ru-bda catalysts is essential for the development of next generation efficient water-oxidation catalysts based on earthabundant metals...Understanding the seven coordination and O-O coupling pathway of the distinguished Ru-bda catalysts is essential for the development of next generation efficient water-oxidation catalysts based on earthabundant metals.This work reports the synthesis,characterization and catalytic properties of a monomeric ruthenium catalyst Ru-bnda(H2 bnda=2,2’-bi(nicotinic acid)-6,6’-dicarboxylic acid)featuring steric hindrance and enhanced hydrophilicity on the backbone.Combining experimental evidence with systematic density functional theory calculations on the Ru-bnda and related catalysts Ru-bda(H_(2)bda=2,2’-bipyridine-6,6’-dicarboxylic acid),Ru-pda(H_(2)pda=1,10-phenanthroline-2,9-dicarboxylic acid),and Ru-biqa(H_(2)biqa=(1,1’-biisoquinoline)-3,3’-dicarboxylic acid),we emphasized that seven coordination clearly determines presence of Ru^(Ⅴ)=O with high spin density on the ORu^(Ⅴ)=O atom,i.e.oxo with radical properties,which is one of the necessary conditions for reacting through the O-O coupling pathway.However,an additional factor to make the condition sufficient is the favorable intermolecular faceto-face interaction for the generation of the pre-reactive[Ru^(Ⅴ)=O…O=Ru^(Ⅴ)],which may be significantly influenced by the secondary coordination environments.This work provides a new understanding of the structure-activity relationship of water-oxidation catalysts and their potential to adopt I2M pathway for O-O bond formation.展开更多
The determination of catalytically active sites is crucial for the design of efficient and stable catalysts toward desired reactions.However,the complexity of supported noble metal catalysts has led to controversy ove...The determination of catalytically active sites is crucial for the design of efficient and stable catalysts toward desired reactions.However,the complexity of supported noble metal catalysts has led to controversy over the locations of catalytically active sites(e.g.,metal,support,and metal/support interface).Here we develop a structurally controllable catalyst system(Pd/SBA-15)to reveal the catalytic active sites for the selective hydrogenation of ketones to alcohol using acetophenone hydrogenation as model reaction.Systematic investigations demonstrated that unsupported Pd nanocrystals have no catalytic activity for acetophenone hydrogenation.However,oxidized Pd species were catalytically highly active for acetophenone hydrogenation.The catalytic activity decreased with the decreased oxidation state of Pd.This work provides insights into the hydrogenation mechanism of ketones but also other unsaturated compounds containing polar bonds,e.g.,nitrobenzene,N-benzylidene-benzylamine,and carbon dioxide.展开更多
Water oxidation is a vital anodic reaction for renewable fuel generation via electrochemical-and photoelectrochemical-driven water splitting or CO_(2)reduction.Ruthenium complexes,such as Ru-bda family,have been shown...Water oxidation is a vital anodic reaction for renewable fuel generation via electrochemical-and photoelectrochemical-driven water splitting or CO_(2)reduction.Ruthenium complexes,such as Ru-bda family,have been shown as highly efficient wateroxidation catalysts(WOCs),particularly when they undergo a bimolecular O-O bond formation pathway.In this study,a novel Ru(pda)-type(pda^(2–)=1,10-phenanthroline-2,9-dicarboxylate)molecular WOC with 4-vinylpyridine axial ligands was immobilized on the glassy carbon electrode surface by electrochemical polymerization.Electrochemical kinetic studies revealed that this homocoupling polymer catalyzes water oxidation through a bimolecular radical coupling pathway,where interaction between two Ru(pda)–oxyl moieties(I2M)forms the O-O bond.The calculated barrier of the I2M pathway by densityfunctional theory(DFT)is significantly lower than the barrier of a water nucleophilic attack(WNA)pathway.By using this polymerization strategy,the Ru centers are brought closer in the distance,and the O-O bond formation pathway by the Ru(pda)catalyst is switched from WNA in a homogeneous molecular catalytic system to I2M in the polymerized film,providing some deep insights into the importance of third coordination sphere engineering of the water oxidation catalyst.展开更多
基金conducted by the Fundamental Research Center of Artificial Photosynthesis(FReCAP)financially supported by the National Natural Science Foundation of China(22172011 and 22088102)+1 种基金the National Key R&D Program of China(2022YFA0911904)the Fundamental Research Funds for the Central Universities(DUT22LK06,DUT22QN213 and DUT23LAB611)。
文摘Inspired by the function of crucial components in photosystemⅡ(PSⅡ),electrochemical and dyesensitized photoelectrochemical(DSPEC)water oxidation devices were constructed by the selfassembly of well-designed amphipathic Ru(bda)-based catalysts(bda=2,2'-bipyrdine-6,6'-dicarbonoxyl acid)and aliphatic chain decorated electrode surfaces,forming lipid bilayer membrane(LBM)-like structures.The Ru(bda)catalysts on electrode-supported LBM films demonstrated remarkable water oxidation performance with different O-O formation mechanisms.However,compared to the slow charge transfer process,the O-O formation pathways did not determine the PEC water oxidation efficiency of the dyesensitized photoanodes,and the different reaction rates for similar catalysts with different catalytic paths did not determine the PEC performance of the DSPECs.Instead,charge transfer plays a decisive role in the PEC water oxidation rate.When an indolo[3,2-b]carbazole derivative was introduced between the Ru(bda)catalysts and aliphatic chain-modified photosensitizer in LBM films,serving as a charge transfer mediator for the tyrosine-histidine pair in PSⅡ,the PEC water oxidation performance of the corresponding photoanodes was dramatically enhanced.
文摘A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures.
基金the financial support from the Swedish Research Council(2017-00935)Swedish Energy Agency+3 种基金the Knut and Alice Wallenberg Foundationthe National Natural Science Foundation of China(21120102036)the National Basic Research Program of China(973 program,2014CB239402)the China Scholarship Council(CSC)。
文摘Understanding the seven coordination and O-O coupling pathway of the distinguished Ru-bda catalysts is essential for the development of next generation efficient water-oxidation catalysts based on earthabundant metals.This work reports the synthesis,characterization and catalytic properties of a monomeric ruthenium catalyst Ru-bnda(H2 bnda=2,2’-bi(nicotinic acid)-6,6’-dicarboxylic acid)featuring steric hindrance and enhanced hydrophilicity on the backbone.Combining experimental evidence with systematic density functional theory calculations on the Ru-bnda and related catalysts Ru-bda(H_(2)bda=2,2’-bipyridine-6,6’-dicarboxylic acid),Ru-pda(H_(2)pda=1,10-phenanthroline-2,9-dicarboxylic acid),and Ru-biqa(H_(2)biqa=(1,1’-biisoquinoline)-3,3’-dicarboxylic acid),we emphasized that seven coordination clearly determines presence of Ru^(Ⅴ)=O with high spin density on the ORu^(Ⅴ)=O atom,i.e.oxo with radical properties,which is one of the necessary conditions for reacting through the O-O coupling pathway.However,an additional factor to make the condition sufficient is the favorable intermolecular faceto-face interaction for the generation of the pre-reactive[Ru^(Ⅴ)=O…O=Ru^(Ⅴ)],which may be significantly influenced by the secondary coordination environments.This work provides a new understanding of the structure-activity relationship of water-oxidation catalysts and their potential to adopt I2M pathway for O-O bond formation.
基金supported by the National Natural Science Foundation of China(Nos.92261207,21890752,and 22002126)。
文摘The determination of catalytically active sites is crucial for the design of efficient and stable catalysts toward desired reactions.However,the complexity of supported noble metal catalysts has led to controversy over the locations of catalytically active sites(e.g.,metal,support,and metal/support interface).Here we develop a structurally controllable catalyst system(Pd/SBA-15)to reveal the catalytic active sites for the selective hydrogenation of ketones to alcohol using acetophenone hydrogenation as model reaction.Systematic investigations demonstrated that unsupported Pd nanocrystals have no catalytic activity for acetophenone hydrogenation.However,oxidized Pd species were catalytically highly active for acetophenone hydrogenation.The catalytic activity decreased with the decreased oxidation state of Pd.This work provides insights into the hydrogenation mechanism of ketones but also other unsaturated compounds containing polar bonds,e.g.,nitrobenzene,N-benzylidene-benzylamine,and carbon dioxide.
基金the financial support from the Fundamental Research Funds for the Central Universities(DUT19LK16)the National Natural Science Foundation of China(Grant no.21120102036)+1 种基金the Swedish Research Council(2017-00935)the K&A Wallenberg Foundation(KAW 2016.0072)。
文摘Water oxidation is a vital anodic reaction for renewable fuel generation via electrochemical-and photoelectrochemical-driven water splitting or CO_(2)reduction.Ruthenium complexes,such as Ru-bda family,have been shown as highly efficient wateroxidation catalysts(WOCs),particularly when they undergo a bimolecular O-O bond formation pathway.In this study,a novel Ru(pda)-type(pda^(2–)=1,10-phenanthroline-2,9-dicarboxylate)molecular WOC with 4-vinylpyridine axial ligands was immobilized on the glassy carbon electrode surface by electrochemical polymerization.Electrochemical kinetic studies revealed that this homocoupling polymer catalyzes water oxidation through a bimolecular radical coupling pathway,where interaction between two Ru(pda)–oxyl moieties(I2M)forms the O-O bond.The calculated barrier of the I2M pathway by densityfunctional theory(DFT)is significantly lower than the barrier of a water nucleophilic attack(WNA)pathway.By using this polymerization strategy,the Ru centers are brought closer in the distance,and the O-O bond formation pathway by the Ru(pda)catalyst is switched from WNA in a homogeneous molecular catalytic system to I2M in the polymerized film,providing some deep insights into the importance of third coordination sphere engineering of the water oxidation catalyst.