Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects ...Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.展开更多
将自主开发清洁生产工艺制备的不溶性硫黄充油产品HD进行全钢胎带束层大配合实验,结果表明,利用HD制得的硫化胶料的硬度、拉伸撕裂强度、黏合性能、分散性、回弹性、老化性能、覆胶性能等各项指标完全达到生产子午胎的相关标准要求。与...将自主开发清洁生产工艺制备的不溶性硫黄充油产品HD进行全钢胎带束层大配合实验,结果表明,利用HD制得的硫化胶料的硬度、拉伸撕裂强度、黏合性能、分散性、回弹性、老化性能、覆胶性能等各项指标完全达到生产子午胎的相关标准要求。与不溶性硫黄国际领先产品Crystex HD OT20相比,采用自制HD不溶性硫黄的轮胎达到150km/h速度级别后发生冠空破坏的时间由2min延长到35min,在时速65km/h、负荷率增至150%级别后可持续运行51h才发生肩裂破坏,耐久时间延长约80%。采用自制不溶性硫黄HD轮胎的高速及耐久性能较Crystex产品有明显优势。清洁工艺制备的不溶性硫黄HD可应用于高性能全钢载重子午胎带束层。展开更多
Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy,...Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading.展开更多
The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theor...The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds(mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.展开更多
By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. Th...By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. The raw materials used in steam cracking and catalytic reforming processes could be allocated properly. During the adsorption process, the separation efficiency of the normal paraffins was above 99.9% with the purity of normal paraffins in the desorption oil exceeding 98.2%. With the use of the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7%-35.0% to 41.4%- 49.2% compared to that of the naphtha in the existing plant under similar operation conditions. The potential aromatic content of the raffinate oil rose from 30.6% to 43.5% compared to that in naphtha. The research octane number of the raffinate oil reached more than 85 with an increase of 20 units compared to that of naphtha, so the raffinate oil is more suitable for use as a blending component for high-octane clean gasoline.展开更多
1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized...1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.展开更多
文摘Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.
文摘将自主开发清洁生产工艺制备的不溶性硫黄充油产品HD进行全钢胎带束层大配合实验,结果表明,利用HD制得的硫化胶料的硬度、拉伸撕裂强度、黏合性能、分散性、回弹性、老化性能、覆胶性能等各项指标完全达到生产子午胎的相关标准要求。与不溶性硫黄国际领先产品Crystex HD OT20相比,采用自制HD不溶性硫黄的轮胎达到150km/h速度级别后发生冠空破坏的时间由2min延长到35min,在时速65km/h、负荷率增至150%级别后可持续运行51h才发生肩裂破坏,耐久时间延长约80%。采用自制不溶性硫黄HD轮胎的高速及耐久性能较Crystex产品有明显优势。清洁工艺制备的不溶性硫黄HD可应用于高性能全钢载重子午胎带束层。
基金SINOPEC for its financial support(No.108012/No.108041)
文摘Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading.
基金the financial support from the National Key Science and Technology Project of China (2011ZX05017-005)
文摘The performance of four formulated solvents(labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds(mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.
文摘By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. The raw materials used in steam cracking and catalytic reforming processes could be allocated properly. During the adsorption process, the separation efficiency of the normal paraffins was above 99.9% with the purity of normal paraffins in the desorption oil exceeding 98.2%. With the use of the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7%-35.0% to 41.4%- 49.2% compared to that of the naphtha in the existing plant under similar operation conditions. The potential aromatic content of the raffinate oil rose from 30.6% to 43.5% compared to that in naphtha. The research octane number of the raffinate oil reached more than 85 with an increase of 20 units compared to that of naphtha, so the raffinate oil is more suitable for use as a blending component for high-octane clean gasoline.
基金the SINOPEC Corporation for the financial support
文摘1-Decene was oligomerized over the supported AlCl3/γ-Al2O3 catalyst in a fixed-bed reactor. The effects of temperature and LHSV on oligomerization of 1-decene were investigated and the synthetic PAO was characterized with GC technique. Furthermore, the life of immobilized catalyst was tested and the mechanism of catalyst deactivation was discussed. The results showed that with an increasing temperature, the PAO yield increased and the kinematic viscosity of oil decreased. The GC results indicated that the synthesized PAO was a mixture consisting of dimers, trimers, tetramers and pentamers. The results of chloride content measurements and BET tests showed that catalyst deactivation could be mainly attributed to the loss of active components.