How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are ...How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are significant challenges.Herein,bifunctional poly(p-terphenyl-co-isatin piperidinium)copolymer with tethered phosphonic acid(t-PA)and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs.The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport.Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid(f-PA)anchored by the tertiary amine base groups,but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation.Thorough the design of the structure,the bifunctional copolymers with lower PA uptake level(<100%)display prominent proton conductivities and peak power densities(99 mS cm^(-1),812 mW cm^(-2)at 160℃),along with lower PA leaching and higher voltage stability,which is a top leading result in disclosed literature.The results demonstrate that the design of intermolecular acid-base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane,realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs.展开更多
BACKGROUND The combination of acute ST-segment elevation myocardial infarction(STEMI)and gastric ulcers poses a challenge to primary percutaneous coronary intervention(PPCI),particularly for young patients.The role of...BACKGROUND The combination of acute ST-segment elevation myocardial infarction(STEMI)and gastric ulcers poses a challenge to primary percutaneous coronary intervention(PPCI),particularly for young patients.The role of drug-coated balloons(DCBs)in the treatment of de novo coronary artery lesions in large vessels remains unclear,especially for patients with STEMI.Our strategy is to implement drug balloon angioplasty following the intracoronary administration of low-dose prourokinase and adequate pre-expansion.CASE SUMMARY A 54-year-old male patient presented to the emergency department due to chest pain on June 24,2019.Within the first 3 minutes of the initial assessment in the emergency room,the electrocardiogram(ECG)showed significant changes.There was atrial fibrillation with ST-segment elevation.Subsequently,atrial fibrillation terminated spontaneously and reverted to sinus rhythm.Soon after,the patient experienced syncope.The ECG revealed torsades de pointes ventricular tachycardia.A few seconds later,it returned to sinus rhythm.High-sensitivity tropon in I was normal.The diagnosis was acute STEMI.Emergency coronary angiography revealed subtotal occlusion with thrombus formation in the proximal segment of the left anterior descending artery.Considering the patient's age and history of peptic ulcer disease,after the intracoronary injection of prourokinase,percutaneous transluminal coronary angioplasty and cutting balloon angioplasty were conducted for thorough preconditioning,and paclitaxel drug-eluting balloon angioplasty was performed without any stents,achieving favorable outcomes.CONCLUSION A PPCI without stents may be a viable treatment strategy for select patients with STEMI,and further research is warranted.展开更多
The rapid advancement of biomedicine in the twenty-first century has been facilitated by the constant innovation in biomedical technology.The most crucial issue in the field of medicine is to use sensor technology to ...The rapid advancement of biomedicine in the twenty-first century has been facilitated by the constant innovation in biomedical technology.The most crucial issue in the field of medicine is to use sensor technology to gather information from primitive organisms,particularly the human body.Design,development,and application of biomedical sensors in the study of clinical diseases’diagnosis and therapy have all been significantly aided by the advancement of medicine.The interest in creating sensors significantly increased in the 1960s.Chemical and biological sensors have been swiftly created in response to an urgent practical necessity,enabling the creation of selective sensors for the direct detection of diverse ions and compounds.The traditional large-size sensors are quickly turning into miniature sensors and are rapidly applied in biological and medical fields.Currently,wearable electronic blood pressure monitors,home blood glucose meters,and quick body surface digital thermometers are commonly used.The advent of a wide variety of medical-grade wearable sensors that will enable real-time biometric data tracking of a large range of physiological characteristics will likely be one of the most revolutionary,exciting,and difficult changes to come to medicine over the next several years.For possible uses in the entertainment,health monitoring,and medical care industries,high-performance flexible strain sensors connected to clothing or human skin are necessary.The use of sensors in the development of biomedical diagnostic tools and medical equipment will enhance human quality of life in the twenty-first century.This article will introduce the current medical sensor field related to sensors for physical quantities,sensors for chemical quantities,sensors for biological quantities such as electronic nose,electronic tongue,and their applications.展开更多
Large-scale epidemiological studies have found that hyperhomocysteinemia is a powerful, independent risk factor for Alzheimer's disease. Trillium tschonoskii maxim is a traditional Chinese medicine that is used to pr...Large-scale epidemiological studies have found that hyperhomocysteinemia is a powerful, independent risk factor for Alzheimer's disease. Trillium tschonoskii maxim is a traditional Chinese medicine that is used to promote memory. However, scientific understanding of its mechanism of action is limited. This report studied the potential neuroprotective effects of Trillium tschonoskii maxim extract against homocysteine-induced cognitive deficits. Rats were intravenously injected with homocysteine(400 μg/kg) for 14 days to induce a model of Alzheimer's disease. These rats were then intragastrically treated with Trillium tschonoskii maxim extract(0.125 or 0.25 g/kg) for 7 consecutive days. Open field test and Morris water maze test were conducted to measure spontaneous activity and learning and memory abilities. Western blot assay was used to detect the levels of Tau protein and other factors involved in Tau phosphorylation in the hippocampus. Immunohistochemical staining was used to examine Tau protein in the hippocampus. Golgi staining was applied to measure hippocampal dendritic spines. Our results demonstrated that homocysteine produced learning and memory deficits and increased levels of Tau phosphorylation, and diminished the activity of catalytic protein phosphatase 2A. The total number of hippocampal dendritic spines was also decreased. Trillium tschonoskii maxim extract treatment reversed the homocysteine-induced changes. The above results suggest that Trillium tschonoskii maxim extract can lessen homocysteine-induced abnormal Tau phosphorylation and improve cognitive deterioration such as that present in Alzheimer's disease.展开更多
The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separate...The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separated into two sub-domains, in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller, while hexahedral elements were used in the outer domain. The mesh was locally refined on the propeller surface and near the wake flow field, and a size function was used to control the growth rate of the grid. Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter (D) downstream. The numerical results show that the axial velocity fluctuates along the wake flow; radial velocity, which is closely related to vortices, attenuates strongly. The trailing vortices interact with the tip vortex at the blades' trailing edge and then separate. The strength of the vortex shrinks rapidly, and the radius decreases 20% at one diameter downstream.展开更多
To recycle vanadium and chromium from the V?Cr-bearing reducing slag,the thermodynamics of separating V(IV)and Cr(III)at 298 K was summarized in the form of potential-pH diagram and activity-pH diagram.The potential-p...To recycle vanadium and chromium from the V?Cr-bearing reducing slag,the thermodynamics of separating V(IV)and Cr(III)at 298 K was summarized in the form of potential-pH diagram and activity-pH diagram.The potential-pH diagrams of V-Mn-H2O and Cr-Mn-H2O systems show that the electrode potential of MnO2/Mn2+is higher than that of VO2+/VO2+but lower than that of Cr2O7 2-/Cr3+,which proves that it is feasible to selectively oxidize low valent vanadium using MnO2.The activity-pH diagrams of V(V)-H2O and Cr(III)-H2O systems show that the precipitation pH of V(V)is far lower than that of Cr(III),and therefore V(V)and Cr(III)can be separated through precipitation method.Based on the thermodynamic analysis,the flowsheet of recovery of vanadium and chromium from the V-Cr-bearing reducing slag is designed.展开更多
Data collection with microcrystals at synchrotron radiation facilities is challenging because it is difficult to harvest and locate microcrystals. Moreover,microcrystals are sensitive to radiation damage; thus, typica...Data collection with microcrystals at synchrotron radiation facilities is challenging because it is difficult to harvest and locate microcrystals. Moreover,microcrystals are sensitive to radiation damage; thus, typically, a complete data set cannot be obtained with a single microcrystal. Herein, we report a new method for data collection with multiple microcrystals having a crystal size ranging from 1 to 30 lm. This method is suitable for not only low-temperature(100 K) data collection but also room-temperature data collection. Thin Kapton membranes were used to capture multiple crystals simultaneously. The microcrystals were visible under an optical microscope and easily located because the membrane was transparent and sufficiently thin. The film was fixed to a bracket that was prepared using a three-dimensional printer. The bracket was fixed on a magnetic base via screwing and employed by the goniometer system for data collection. Multiple data sets of fatty acid-binding protein 4(FABP4) and lysozyme microcrystals were collected using this novel designed device. Finally, the structures of protein FABP4 and lysozyme were obtained from these data via the molecule replacement method. The data statistics reveal that this method provides a comparable result to traditional methods such as a nylon loop.展开更多
The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials...The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization,high-temperature stable, Type II femtosecond laser modifications were continuously inscribed,point by point, with only an insertion loss at 1 d B m~(-1) or 0.001 d B per point sensor device.High-temperature performance of fiber sensors was tested at 1000℃, which showed a temperature fluctuation of ±5.5℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.展开更多
Image retrieval has become more and more important because of the explosive growth of images on the Internet.Traditional image retrieval methods have limited image retrieval performance due to the poor image expressio...Image retrieval has become more and more important because of the explosive growth of images on the Internet.Traditional image retrieval methods have limited image retrieval performance due to the poor image expression abhility of visual feature and high dimension of feature.Hashing is a widely-used method for Approximate Nearest Neighbor(ANN)search due to its rapidity and timeliness.Meanwhile,Convolutional Neural Networks(CNNs)have strong discriminative characteristics which are used for image classification.In this paper,we propose a CNN architecture based on improved deep supervised hashing(IDSH)method,by which the binary compact codes can be generated directly.The main contributions of this paper are as follows:first,we add a Batch Normalization(BN)layer before each activation layer to prevent the gradient from vanishing and improve the training speed;secondly,we use Divide-and-Encode Module to map image features to approximate hash codes;finally,we adopt center loss to optimize training.Extensive experimental results on four large-scale datasets:MNIST,CIFAR-10,NUS-WIDE and SVHN demonstrate the effectiveness of the proposed method compared with other state-of-the-art hashing methods.展开更多
Honokiol(HK)usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability.We synthesized and characterized a novel phosphate prodrug of honokiol(HKP)for in vitro and in vivo use.HKP great...Honokiol(HK)usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability.We synthesized and characterized a novel phosphate prodrug of honokiol(HKP)for in vitro and in vivo use.HKP greatly enhanced the aqueous solubility of HK(127.54±15.53 mg/ml)and the stability in buffer solution was sufficient for intravenous administration.The enzymatic hydrolysis of HKP to HK was extremely rapid in vitro(T 1/2=8.9±2.11 s).Pharmacokinetics studies demonstrated that after intravenous administration of HKP(32 mg/kg),HKP was converted rapidly to HK with a time to reach the maximum plasma concentration of^5 min.The prodrug HKP achieved an improved T 1/2(7.97±1.30 h)and terminal volume of distribution(26.02±6.04 ml/kg)compared with direct injection of the equimolar parent drug(0.66±0.01 h)and(2.90±0.342 ml/kg),respectively.Furthermore,oral administration of HKP showed rapid and improved absorption compared with the parent drug.HKP was confirmed to maintain the bioactivity of the parent drug for ameliorating ischemia-reperfusion injury by decreasing brain infarction and improving neurologic function.Taken together,HKP is a potentially useful aqueous-soluble prodrug with improved pharmacokinetic properties which may merit further development as a potential drug candidate.展开更多
Perovskite solar cells(PSCs) are the most promising commercial photoelectric conversion technology in the future.The planar p–i–n structure cells have advantages in negligible hysteresis, low temperature preparation...Perovskite solar cells(PSCs) are the most promising commercial photoelectric conversion technology in the future.The planar p–i–n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability.However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-levelmatched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO_(x)/Sr:NiO_(x)bilayer hole transport layer(HTL) improves the holes transmission of NiO_(x)based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves J_(sc). As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 m A·cm^(-2) and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells.展开更多
Background: To evaluate the robustness of head and neck treatment using proton pencil beam scanning (PBS) technique with respect to range uncertainty (RU) and setup errors (SE), and to establish a robust PBS planning ...Background: To evaluate the robustness of head and neck treatment using proton pencil beam scanning (PBS) technique with respect to range uncertainty (RU) and setup errors (SE), and to establish a robust PBS planning strategy for future treatment. Methods and Materials: Ten consecutive patients were planned with a novel proton field geometry (combination of two posterior oblique fields and one anterior field with gradient dose match) using single-field uniform dose (SFUD) planning technique and the proton plans were dosimetrically compared to two coplanar arc VMAT plans. Robustness of the plans, with respect to range uncertainties (RU = ± 3% for proton) and setup errors (SE = 2.25 mm for proton and VMAT), in terms of deviations to target coverage (CTV D98%) and OAR doses (max/mean), were evaluated and compared for each patient under worst case scenarios. Results: Dosimetrically, PBS plans provided better sparing to larynx (p = 0.005), oral cavity (p < 0.001) and contralateral parotid (p = 0.004) when compared to VMAT. CTV D98% variations were higher from SE than from RU for proton plans (-1.1% ± 1.3 % vs -0.4% ± 0.7% for nodal CTV and -1.4% ± 1.2 vs -0.4% ± 0.5% % for boost CTV). Overall, the magnitudes of variation of CTV D98% to combined SE and RU were found to be similar to the impact of the SE on the VMAT plans (-1.6% ± 1.9% vs -1.7% ± 1.4% for nodal CTV and -1.9% ± 1.6% vs -1.3% ± 1.5% for boost CTV). Compared to VMAT, a larger range of relative dose deviations were found for OARs in proton plans, but safe doses were maintained for cord (41.8 ± 3.6 Gy for PBS and 41.7 ± 3.9 Gy for VMAT) and brainstem (35.2 ± 8.4 Gy for PBS and 36.2 ± 5.1 Gy for VMAT) in worst case scenarios. Conclusions: Compared to VMAT, proton plans containing three SFUD fields with superior-inferior gradient dose matching had improved sparing to larynx, contralateral parotid and oral cavity, while providing similar robustness of target coverage. Evaluation of OAR dose robustness showed higher sensitivities to uncertainties for proton plans, but safe dose levels were maintained for cord and brainstem.展开更多
In the current socialist market economy,if an enterprise wants to grow and develop,it must do all kinds of management for its enterprise,and the most important thing for strengthening management of enterprises is to s...In the current socialist market economy,if an enterprise wants to grow and develop,it must do all kinds of management for its enterprise,and the most important thing for strengthening management of enterprises is to strengthen their own operation and management abilities.Whether it is financial management,management of personnel efficiency,or management of talents,it is necessary to protect from the infrastructure,so as to fundamentally improve the economic benefits of the enterprise,and vice versa if社is not properly managed,it will affect the development of the enterprise.Therefore,improving the operation and management abilities of enterprises at present is an important factor to promote the economic development of enterprises.This paper analyzes the management problems of enterprises and the definition of enterprise operation and management abilities,and analyzes how enterprises can reform and innovate,thus strengthening the operation and management abilities and economic benefits of enterprises.展开更多
Knowledge graph technology play a more and more important role in various fields of industry and academia.This paper firstly introduces the general framework of the knowledge graph construction,which includes three st...Knowledge graph technology play a more and more important role in various fields of industry and academia.This paper firstly introduces the general framework of the knowledge graph construction,which includes three stages:information extraction,knowledge fusion and knowledge processing.In order to improve the efficiency of quality and safety supervision of transportation engineering construction,this paper constructs a knowledge graph by acquiring multi-sources heterogeneous data from supervision of transportation engineering quality and safety.It employs a bottom-up construction strategy and some natural language processing methods to solve the problems of the knowledge extraction for transportation engineering construction.We use the entity relation extraction method to extract the entity triples from the multi-sources heterogeneous data,and then employ knowledge inference to complete the edges in the constructed knowledge graph,finally perform quality evaluation to add the valid triples to the knowledge graph for updating.Subgraph matching technology is also exploited to retrieve the constructed knowledge graph for efficiently acquiring the useful knowledge about the quality and safety of transportation engineering projects.The results show that the constructed knowledge graph provides a practical and valuable tool for the quality and safety supervision of transportation engineering construction.展开更多
High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As adva...High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As advanced compressors are defined with a large design space,their optimization is most efficiently achieved using a gradient-based approach,where the gradient can be computed using an adjoint method,at a cost nearly independent of the dimension of the design space.While the adjoint method has been widely used for aerodynamic shape optimization,its use for structural shape optimizations of compressor blades has not been as well studied.This paper discussed a discrete adjoint solver for structural sensitivity analysis developed within the opensource Computational Structural Mechanics(CSM)software CalculiX,and proposed an efficient stress sensitivity analysis method based on the Finite Element Method(FEM)using adjoint.The proposed method is applied to compute the stress sensitivity of a wide-chord fan blade in a highbypass-ratio engine.The accuracy of the adjoint-based stress sensitivity is verified against central finite differences.In terms of computational efficiency,the adjoint approach is about 4.5 times more efficient than the conventional approach using finite differences.This works marks an important step towards fluid-structural coupled adjoint optimization of wide-chord fan blades.展开更多
基金supported by the National Key Research and Development Program(2018YFA0702002)the National Key Research and Development Program(Japan-China Joint Research Program)(2017YFE0197900)
文摘How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are significant challenges.Herein,bifunctional poly(p-terphenyl-co-isatin piperidinium)copolymer with tethered phosphonic acid(t-PA)and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs.The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport.Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid(f-PA)anchored by the tertiary amine base groups,but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation.Thorough the design of the structure,the bifunctional copolymers with lower PA uptake level(<100%)display prominent proton conductivities and peak power densities(99 mS cm^(-1),812 mW cm^(-2)at 160℃),along with lower PA leaching and higher voltage stability,which is a top leading result in disclosed literature.The results demonstrate that the design of intermolecular acid-base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane,realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs.
基金Supported by Mianyang Health Commission 2019 Scientific Research Encouragement Project,No.201948.
文摘BACKGROUND The combination of acute ST-segment elevation myocardial infarction(STEMI)and gastric ulcers poses a challenge to primary percutaneous coronary intervention(PPCI),particularly for young patients.The role of drug-coated balloons(DCBs)in the treatment of de novo coronary artery lesions in large vessels remains unclear,especially for patients with STEMI.Our strategy is to implement drug balloon angioplasty following the intracoronary administration of low-dose prourokinase and adequate pre-expansion.CASE SUMMARY A 54-year-old male patient presented to the emergency department due to chest pain on June 24,2019.Within the first 3 minutes of the initial assessment in the emergency room,the electrocardiogram(ECG)showed significant changes.There was atrial fibrillation with ST-segment elevation.Subsequently,atrial fibrillation terminated spontaneously and reverted to sinus rhythm.Soon after,the patient experienced syncope.The ECG revealed torsades de pointes ventricular tachycardia.A few seconds later,it returned to sinus rhythm.High-sensitivity tropon in I was normal.The diagnosis was acute STEMI.Emergency coronary angiography revealed subtotal occlusion with thrombus formation in the proximal segment of the left anterior descending artery.Considering the patient's age and history of peptic ulcer disease,after the intracoronary injection of prourokinase,percutaneous transluminal coronary angioplasty and cutting balloon angioplasty were conducted for thorough preconditioning,and paclitaxel drug-eluting balloon angioplasty was performed without any stents,achieving favorable outcomes.CONCLUSION A PPCI without stents may be a viable treatment strategy for select patients with STEMI,and further research is warranted.
文摘The rapid advancement of biomedicine in the twenty-first century has been facilitated by the constant innovation in biomedical technology.The most crucial issue in the field of medicine is to use sensor technology to gather information from primitive organisms,particularly the human body.Design,development,and application of biomedical sensors in the study of clinical diseases’diagnosis and therapy have all been significantly aided by the advancement of medicine.The interest in creating sensors significantly increased in the 1960s.Chemical and biological sensors have been swiftly created in response to an urgent practical necessity,enabling the creation of selective sensors for the direct detection of diverse ions and compounds.The traditional large-size sensors are quickly turning into miniature sensors and are rapidly applied in biological and medical fields.Currently,wearable electronic blood pressure monitors,home blood glucose meters,and quick body surface digital thermometers are commonly used.The advent of a wide variety of medical-grade wearable sensors that will enable real-time biometric data tracking of a large range of physiological characteristics will likely be one of the most revolutionary,exciting,and difficult changes to come to medicine over the next several years.For possible uses in the entertainment,health monitoring,and medical care industries,high-performance flexible strain sensors connected to clothing or human skin are necessary.The use of sensors in the development of biomedical diagnostic tools and medical equipment will enhance human quality of life in the twenty-first century.This article will introduce the current medical sensor field related to sensors for physical quantities,sensors for chemical quantities,sensors for biological quantities such as electronic nose,electronic tongue,and their applications.
基金supported in part by grants from the National Natural Science Foundation of China,No.81260172,81660223the Opening Foundation of Hubei Key Laboratory of Biological Resource Protection and Utilization of China,No.PKLHB1318+2 种基金the Science and Technology Innovation Team Project of Hubei University for Nationalities of China,No.MY2011T005the Doctoral Fund of Hubei University for Nationalities of China,No.MY2012B015the Natural Science Foundation of Hubei Province of China,No.2017CFB451
文摘Large-scale epidemiological studies have found that hyperhomocysteinemia is a powerful, independent risk factor for Alzheimer's disease. Trillium tschonoskii maxim is a traditional Chinese medicine that is used to promote memory. However, scientific understanding of its mechanism of action is limited. This report studied the potential neuroprotective effects of Trillium tschonoskii maxim extract against homocysteine-induced cognitive deficits. Rats were intravenously injected with homocysteine(400 μg/kg) for 14 days to induce a model of Alzheimer's disease. These rats were then intragastrically treated with Trillium tschonoskii maxim extract(0.125 or 0.25 g/kg) for 7 consecutive days. Open field test and Morris water maze test were conducted to measure spontaneous activity and learning and memory abilities. Western blot assay was used to detect the levels of Tau protein and other factors involved in Tau phosphorylation in the hippocampus. Immunohistochemical staining was used to examine Tau protein in the hippocampus. Golgi staining was applied to measure hippocampal dendritic spines. Our results demonstrated that homocysteine produced learning and memory deficits and increased levels of Tau phosphorylation, and diminished the activity of catalytic protein phosphatase 2A. The total number of hippocampal dendritic spines was also decreased. Trillium tschonoskii maxim extract treatment reversed the homocysteine-induced changes. The above results suggest that Trillium tschonoskii maxim extract can lessen homocysteine-induced abnormal Tau phosphorylation and improve cognitive deterioration such as that present in Alzheimer's disease.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.HEUCFT1001)Ph.D Programs Foundation of Ministry of Education of China(Grant No.10702016)
文摘The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separated into two sub-domains, in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller, while hexahedral elements were used in the outer domain. The mesh was locally refined on the propeller surface and near the wake flow field, and a size function was used to control the growth rate of the grid. Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter (D) downstream. The numerical results show that the axial velocity fluctuates along the wake flow; radial velocity, which is closely related to vortices, attenuates strongly. The trailing vortices interact with the tip vortex at the blades' trailing edge and then separate. The strength of the vortex shrinks rapidly, and the radius decreases 20% at one diameter downstream.
基金Project(51104186)supported by the National Natural Science Foundation of ChinaProject(2016JJ2142)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘To recycle vanadium and chromium from the V?Cr-bearing reducing slag,the thermodynamics of separating V(IV)and Cr(III)at 298 K was summarized in the form of potential-pH diagram and activity-pH diagram.The potential-pH diagrams of V-Mn-H2O and Cr-Mn-H2O systems show that the electrode potential of MnO2/Mn2+is higher than that of VO2+/VO2+but lower than that of Cr2O7 2-/Cr3+,which proves that it is feasible to selectively oxidize low valent vanadium using MnO2.The activity-pH diagrams of V(V)-H2O and Cr(III)-H2O systems show that the precipitation pH of V(V)is far lower than that of Cr(III),and therefore V(V)and Cr(III)can be separated through precipitation method.Based on the thermodynamic analysis,the flowsheet of recovery of vanadium and chromium from the V-Cr-bearing reducing slag is designed.
基金supported by the Strategic Priority Research program of the Chinese Academy of Sciences(No.XDB08030101)
文摘Data collection with microcrystals at synchrotron radiation facilities is challenging because it is difficult to harvest and locate microcrystals. Moreover,microcrystals are sensitive to radiation damage; thus, typically, a complete data set cannot be obtained with a single microcrystal. Herein, we report a new method for data collection with multiple microcrystals having a crystal size ranging from 1 to 30 lm. This method is suitable for not only low-temperature(100 K) data collection but also room-temperature data collection. Thin Kapton membranes were used to capture multiple crystals simultaneously. The microcrystals were visible under an optical microscope and easily located because the membrane was transparent and sufficiently thin. The film was fixed to a bracket that was prepared using a three-dimensional printer. The bracket was fixed on a magnetic base via screwing and employed by the goniometer system for data collection. Multiple data sets of fatty acid-binding protein 4(FABP4) and lysozyme microcrystals were collected using this novel designed device. Finally, the structures of protein FABP4 and lysozyme were obtained from these data via the molecule replacement method. The data statistics reveal that this method provides a comparable result to traditional methods such as a nylon loop.
基金supported in part through Department of Energy Grants DE-NE0008686 and DE-FE00028992the NEET ASI program under DOE Idaho Operations Office Contract DE-AC07-05ID14517。
文摘The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization,high-temperature stable, Type II femtosecond laser modifications were continuously inscribed,point by point, with only an insertion loss at 1 d B m~(-1) or 0.001 d B per point sensor device.High-temperature performance of fiber sensors was tested at 1000℃, which showed a temperature fluctuation of ±5.5℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.
文摘Image retrieval has become more and more important because of the explosive growth of images on the Internet.Traditional image retrieval methods have limited image retrieval performance due to the poor image expression abhility of visual feature and high dimension of feature.Hashing is a widely-used method for Approximate Nearest Neighbor(ANN)search due to its rapidity and timeliness.Meanwhile,Convolutional Neural Networks(CNNs)have strong discriminative characteristics which are used for image classification.In this paper,we propose a CNN architecture based on improved deep supervised hashing(IDSH)method,by which the binary compact codes can be generated directly.The main contributions of this paper are as follows:first,we add a Batch Normalization(BN)layer before each activation layer to prevent the gradient from vanishing and improve the training speed;secondly,we use Divide-and-Encode Module to map image features to approximate hash codes;finally,we adopt center loss to optimize training.Extensive experimental results on four large-scale datasets:MNIST,CIFAR-10,NUS-WIDE and SVHN demonstrate the effectiveness of the proposed method compared with other state-of-the-art hashing methods.
基金supported by the Scientific Research Fund of the National Natural Science Foundation of China ( 81201668 )Chengdu Science and Technology Bureau ( 2015HM01-00506-SF , 2018-YF05-00454-SN )+1 种基金Scientific Research Fund of the Sichuan Provincial Education Department (17CZ0011, 17ZA0109)the Scientific Research Fund of Chengdu Medical College (CYCG15-01)
文摘Honokiol(HK)usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability.We synthesized and characterized a novel phosphate prodrug of honokiol(HKP)for in vitro and in vivo use.HKP greatly enhanced the aqueous solubility of HK(127.54±15.53 mg/ml)and the stability in buffer solution was sufficient for intravenous administration.The enzymatic hydrolysis of HKP to HK was extremely rapid in vitro(T 1/2=8.9±2.11 s).Pharmacokinetics studies demonstrated that after intravenous administration of HKP(32 mg/kg),HKP was converted rapidly to HK with a time to reach the maximum plasma concentration of^5 min.The prodrug HKP achieved an improved T 1/2(7.97±1.30 h)and terminal volume of distribution(26.02±6.04 ml/kg)compared with direct injection of the equimolar parent drug(0.66±0.01 h)and(2.90±0.342 ml/kg),respectively.Furthermore,oral administration of HKP showed rapid and improved absorption compared with the parent drug.HKP was confirmed to maintain the bioactivity of the parent drug for ameliorating ischemia-reperfusion injury by decreasing brain infarction and improving neurologic function.Taken together,HKP is a potentially useful aqueous-soluble prodrug with improved pharmacokinetic properties which may merit further development as a potential drug candidate.
基金supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2021QN1110)。
文摘Perovskite solar cells(PSCs) are the most promising commercial photoelectric conversion technology in the future.The planar p–i–n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability.However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-levelmatched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO_(x)/Sr:NiO_(x)bilayer hole transport layer(HTL) improves the holes transmission of NiO_(x)based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves J_(sc). As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 m A·cm^(-2) and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells.
文摘Background: To evaluate the robustness of head and neck treatment using proton pencil beam scanning (PBS) technique with respect to range uncertainty (RU) and setup errors (SE), and to establish a robust PBS planning strategy for future treatment. Methods and Materials: Ten consecutive patients were planned with a novel proton field geometry (combination of two posterior oblique fields and one anterior field with gradient dose match) using single-field uniform dose (SFUD) planning technique and the proton plans were dosimetrically compared to two coplanar arc VMAT plans. Robustness of the plans, with respect to range uncertainties (RU = ± 3% for proton) and setup errors (SE = 2.25 mm for proton and VMAT), in terms of deviations to target coverage (CTV D98%) and OAR doses (max/mean), were evaluated and compared for each patient under worst case scenarios. Results: Dosimetrically, PBS plans provided better sparing to larynx (p = 0.005), oral cavity (p < 0.001) and contralateral parotid (p = 0.004) when compared to VMAT. CTV D98% variations were higher from SE than from RU for proton plans (-1.1% ± 1.3 % vs -0.4% ± 0.7% for nodal CTV and -1.4% ± 1.2 vs -0.4% ± 0.5% % for boost CTV). Overall, the magnitudes of variation of CTV D98% to combined SE and RU were found to be similar to the impact of the SE on the VMAT plans (-1.6% ± 1.9% vs -1.7% ± 1.4% for nodal CTV and -1.9% ± 1.6% vs -1.3% ± 1.5% for boost CTV). Compared to VMAT, a larger range of relative dose deviations were found for OARs in proton plans, but safe doses were maintained for cord (41.8 ± 3.6 Gy for PBS and 41.7 ± 3.9 Gy for VMAT) and brainstem (35.2 ± 8.4 Gy for PBS and 36.2 ± 5.1 Gy for VMAT) in worst case scenarios. Conclusions: Compared to VMAT, proton plans containing three SFUD fields with superior-inferior gradient dose matching had improved sparing to larynx, contralateral parotid and oral cavity, while providing similar robustness of target coverage. Evaluation of OAR dose robustness showed higher sensitivities to uncertainties for proton plans, but safe dose levels were maintained for cord and brainstem.
文摘In the current socialist market economy,if an enterprise wants to grow and develop,it must do all kinds of management for its enterprise,and the most important thing for strengthening management of enterprises is to strengthen their own operation and management abilities.Whether it is financial management,management of personnel efficiency,or management of talents,it is necessary to protect from the infrastructure,so as to fundamentally improve the economic benefits of the enterprise,and vice versa if社is not properly managed,it will affect the development of the enterprise.Therefore,improving the operation and management abilities of enterprises at present is an important factor to promote the economic development of enterprises.This paper analyzes the management problems of enterprises and the definition of enterprise operation and management abilities,and analyzes how enterprises can reform and innovate,thus strengthening the operation and management abilities and economic benefits of enterprises.
基金This work was supported by Scientific Research Project of Department of Transportation of Hunan Province under Grant No.201814.
文摘Knowledge graph technology play a more and more important role in various fields of industry and academia.This paper firstly introduces the general framework of the knowledge graph construction,which includes three stages:information extraction,knowledge fusion and knowledge processing.In order to improve the efficiency of quality and safety supervision of transportation engineering construction,this paper constructs a knowledge graph by acquiring multi-sources heterogeneous data from supervision of transportation engineering quality and safety.It employs a bottom-up construction strategy and some natural language processing methods to solve the problems of the knowledge extraction for transportation engineering construction.We use the entity relation extraction method to extract the entity triples from the multi-sources heterogeneous data,and then employ knowledge inference to complete the edges in the constructed knowledge graph,finally perform quality evaluation to add the valid triples to the knowledge graph for updating.Subgraph matching technology is also exploited to retrieve the constructed knowledge graph for efficiently acquiring the useful knowledge about the quality and safety of transportation engineering projects.The results show that the constructed knowledge graph provides a practical and valuable tool for the quality and safety supervision of transportation engineering construction.
基金Supported by the Science Center for Gas Turbine Project,China(No.P2022-C-II-001-001).
文摘High-performance compressor design is best achieved with a good trade-off between aerodynamic and structural considerations,which requires efficient and accurate multidisciplinary design and optimization tools.As advanced compressors are defined with a large design space,their optimization is most efficiently achieved using a gradient-based approach,where the gradient can be computed using an adjoint method,at a cost nearly independent of the dimension of the design space.While the adjoint method has been widely used for aerodynamic shape optimization,its use for structural shape optimizations of compressor blades has not been as well studied.This paper discussed a discrete adjoint solver for structural sensitivity analysis developed within the opensource Computational Structural Mechanics(CSM)software CalculiX,and proposed an efficient stress sensitivity analysis method based on the Finite Element Method(FEM)using adjoint.The proposed method is applied to compute the stress sensitivity of a wide-chord fan blade in a highbypass-ratio engine.The accuracy of the adjoint-based stress sensitivity is verified against central finite differences.In terms of computational efficiency,the adjoint approach is about 4.5 times more efficient than the conventional approach using finite differences.This works marks an important step towards fluid-structural coupled adjoint optimization of wide-chord fan blades.