AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end...AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.展开更多
Employing a comprehensive structure search and high-throughput first-principles calculation method on 1561 compounds,the present study reveals the phase diagram of Lu-H-N.In detail,the formation energy landscape of Lu...Employing a comprehensive structure search and high-throughput first-principles calculation method on 1561 compounds,the present study reveals the phase diagram of Lu-H-N.In detail,the formation energy landscape of Lu-H-N is derived and utilized to assess the thermodynamic stability of each compound that is created via element substitution.The result indicates that there is no stable ternary structure in the Lu-H-N chemical system,however,metastable ternary structures,such as Lu_(20)H_(2)N_(17)(C2/m)and Lu_(2)H_(2)N(P3m1),are observed to have small E_(hull)(<100 meV/atom).It is also found that the energy convex hull of the Lu-H-N system shifts its shape when applying hydrostatic pressure up to 10 GPa,and the external pressure stabilizes a couple of binary phases such as LuN_9 and Lu_(10)H_(21).Additionally,interstitial voids in LuH_(2)are observed,which may explain the formation of Lu_(10)H_(21)and LuH_(3-δ)N_ε.To provide a basis for comparison,x-ray diffraction patterns and electronic structures of some compounds are also presented.展开更多
The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our a...The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence(GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model, named Mat Chat, focuses on predicting inorganic material synthesis pathways. Mat Chat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although Mat Chat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. Mat Chat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.展开更多
The interlayer hybridization(IH)of van der Waals(vdW)materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions(t)in real space.Here,we develop a more fundamental understand...The interlayer hybridization(IH)of van der Waals(vdW)materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions(t)in real space.Here,we develop a more fundamental understanding of IH by introducing a new physical quantity,the IH admixture ratioα.Consequently,an exotic strategy of IH engineering in energy space can be proposed,i.e.,instead of changing t as commonly used,αcan be effectively tuned in energy space by changing the on-site energy difference(2Δ)between neighboring-layer states.In practice,this is feasible via reshaping the electrostatic potential of the surface by deposing a dipolar overlayer,e.g.,crystalline ice.Our first-principles calculations unveil that IH engineering via adjusting 2Δcan greatly tune interlayer optical transitions in transition-metal dichalcogenide bilayers,switch different types of Dirac surface states in Bi_(2)Se_(3)thin films,and control magnetic phase transition of charge density waves in 1H/1T-TaS_(2)bilayers,opening new opportunities to govern the fundamental optoelectronic,topological,and magnetic properties of vdW systems beyond the traditional interlayer distance or twisting engineering.展开更多
Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P...Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P 6/mmm,and CsV_(6)Sb_(6)with space group R3m,as the parent compounds.Totally 4158 materials were obtained through element substitutions,and these materials were then calculated via density functional theory in high-throughput mode.Afterwards,48 materials were identified with high thermodynamic stability(E_(hull)<5 meV/atom).Furthermore,we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis.Finally,by calculating the electronic structures of these materials,we attempted to identify patterns in the electronic structure variations as the elements change.This study provides guidance for discovering promising AM_(3)X_(5)/AM_(6)X_(6)Kagome materials from a vast phase space.展开更多
Transition metal dichalcogenides(TMDs),being valley selectively,are an ideal system hosting excitons.Stacking TMDs together to form heterostructure offers an exciting platform to engineer new optical and electronic pr...Transition metal dichalcogenides(TMDs),being valley selectively,are an ideal system hosting excitons.Stacking TMDs together to form heterostructure offers an exciting platform to engineer new optical and electronic properties in solid-state systems.However,due to the limited accuracy and repetitiveness of sample preparation,the effects of interlayer coupling on the electronic and excitonic properties have not been systematically investigated.In this report,we study the photoluminescence spectra of bilayer-bilayer MoS_(2)/WS_(2) heterostructure with a typeⅡband alignment.We demonstrate that thermal annealing can increase interlayer coupling in the van der Waals heterostructures,and after thermally induced band hybridization such heterostructure behaves more like an artificial new solid,rather than just the combination of two individual TMD components.We also carry out experimental and theoretical studies of the electric controllable direct and indirect infrared interlayer excitons in such system.Our study reveals the impact of interlayer coupling on interlayer excitons and will shed light on the understanding and engineering of layer-controlled spin-valley configuration in twisted van der Waals heterostructures.展开更多
Based on first-principles calculations, Boltzmann transport equation and semiclassical analysis, we conduct a detailed study on the lattice thermal conductivity κL, Seebeck coefficient S, electrical conductivity σ, ...Based on first-principles calculations, Boltzmann transport equation and semiclassical analysis, we conduct a detailed study on the lattice thermal conductivity κL, Seebeck coefficient S, electrical conductivity σ, power factor S2σ and dimensionless figure of merit, zT, for K3IO. It is found that K3IO exhibits relatively low lattice thermal conductivity of 0.93 W·m-1·K-1 at 300 K, which is lower than the value 1.26 W·m-1·K-1 of the classical TE material PbTe. This is due to the smaller phonon group velocity νg and smaller relaxation time τλ. The low lattice thermal conductivity can lead to excellent thermoelectric properties. Thus maximum zT of 2.87 is obtained at 700 K, and the zT = 0.41 at 300 K indicate that K3IO is a potential excellent room temperature TE material. Our research on K3IO shows that it has excellent thermoelectric properties, and it is a promising candidate for applications in fields in terms of thermoelectricity.展开更多
Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface char...Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments.展开更多
The Cs V_(3)Sb_(5) kagome lattice holds the promise for manifesting electron correlation,topology and superconductivity.However,by far only three Cs V_(3)Sb_(5)-like kagome materials have been experimentally spotted.W...The Cs V_(3)Sb_(5) kagome lattice holds the promise for manifesting electron correlation,topology and superconductivity.However,by far only three Cs V_(3)Sb_(5)-like kagome materials have been experimentally spotted.We enlarge this family of materials to 1386 compounds via element species substitution,and the further screening process suggests that 28 promising candidates have superior thermodynamic stability,hence they are highly likely to be synthesizable.Moreover,these compounds possess several unique electronic structures,and can be categorized into five non-magnetic and three magnetic groups accordingly.It is our hope that this work can greatly expand the viable phase space of the Cs V_(3)Sb_(5)-like materials for investigating or tuning the novel quantum phenomena in kagome lattice.展开更多
Time-periodic laser driving can create nonequilibrium states not accessible in equilibrium,opening new regimes in materials engineering and topological phase transitions.We report that black phosphorus(BP)exhibits spa...Time-periodic laser driving can create nonequilibrium states not accessible in equilibrium,opening new regimes in materials engineering and topological phase transitions.We report that black phosphorus(BP)exhibits spatially nonuniform topological Floquet-Dirac states under laser illumination,mimicking the"gravity"felt by fermionic quasiparticles in the same way as that for a Schwarzschild black hole(SBH).Quantum tunneling of electrons from a type-ⅡDirac cone(inside BH)to a type-ⅠDirac cone(outside BH)emits an SBH-like Planck radiation spectrum.The Hawking temperature T_H obtained for a fermionic analog of BH in the bilayer BP is approximately 3K,which is several orders of magnitude higher than that in previous works.Our work sheds light on increasing T_H from the perspective of engineering 2D materials by time-periodic light illumination.The predicted SBH-like Hawking radiation,accessible in BP thin films,provides clues to probe analogous astrophysical phenomena in solids.展开更多
基金Supported by National Natural Science Foundation for Young Scientists of China(No.82101097)National Natural Science Foundation of China(No.82070937).
文摘AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.
基金Chinese Academy of Sciences(Grant Nos.CAS-WX2023SF0101 and XDB33020000)the National Key R&D Program of China(Grant Nos.2021YFA1400200 and 2021YFA0718700)。
文摘Employing a comprehensive structure search and high-throughput first-principles calculation method on 1561 compounds,the present study reveals the phase diagram of Lu-H-N.In detail,the formation energy landscape of Lu-H-N is derived and utilized to assess the thermodynamic stability of each compound that is created via element substitution.The result indicates that there is no stable ternary structure in the Lu-H-N chemical system,however,metastable ternary structures,such as Lu_(20)H_(2)N_(17)(C2/m)and Lu_(2)H_(2)N(P3m1),are observed to have small E_(hull)(<100 meV/atom).It is also found that the energy convex hull of the Lu-H-N system shifts its shape when applying hydrostatic pressure up to 10 GPa,and the external pressure stabilizes a couple of binary phases such as LuN_9 and Lu_(10)H_(21).Additionally,interstitial voids in LuH_(2)are observed,which may explain the formation of Lu_(10)H_(21)and LuH_(3-δ)N_ε.To provide a basis for comparison,x-ray diffraction patterns and electronic structures of some compounds are also presented.
基金supported by the Informatization Plan of the Chinese Academy of Sciences (Grant No. CASWX2023SF-0101)the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-7025)+1 种基金the Youth Innovation Promotion Association CAS (Grant No. 2021167)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33020000)。
文摘The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence(GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model, named Mat Chat, focuses on predicting inorganic material synthesis pathways. Mat Chat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although Mat Chat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. Mat Chat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1504000)the National Natural Science Foundation of China(Grant Nos.12088101,U2230402)+1 种基金the Tianjin Natural Science Foundation(Grant No.20JCZDJC00750)the Deutsche Forschungsgemeinschaft(DFG)(Grant No.EXC 2077)。
文摘The interlayer hybridization(IH)of van der Waals(vdW)materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions(t)in real space.Here,we develop a more fundamental understanding of IH by introducing a new physical quantity,the IH admixture ratioα.Consequently,an exotic strategy of IH engineering in energy space can be proposed,i.e.,instead of changing t as commonly used,αcan be effectively tuned in energy space by changing the on-site energy difference(2Δ)between neighboring-layer states.In practice,this is feasible via reshaping the electrostatic potential of the surface by deposing a dipolar overlayer,e.g.,crystalline ice.Our first-principles calculations unveil that IH engineering via adjusting 2Δcan greatly tune interlayer optical transitions in transition-metal dichalcogenide bilayers,switch different types of Dirac surface states in Bi_(2)Se_(3)thin films,and control magnetic phase transition of charge density waves in 1H/1T-TaS_(2)bilayers,opening new opportunities to govern the fundamental optoelectronic,topological,and magnetic properties of vdW systems beyond the traditional interlayer distance or twisting engineering.
基金supported by the Chinese Academy of Sciences(Grant Nos.CASWX2023SF-0101,ZDBS-LY-SLH007 and XDB33020000)the National Key R&D Program of China(Grant No.2021YFA0718700)。
文摘Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P 6/mmm,and CsV_(6)Sb_(6)with space group R3m,as the parent compounds.Totally 4158 materials were obtained through element substitutions,and these materials were then calculated via density functional theory in high-throughput mode.Afterwards,48 materials were identified with high thermodynamic stability(E_(hull)<5 meV/atom).Furthermore,we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis.Finally,by calculating the electronic structures of these materials,we attempted to identify patterns in the electronic structure variations as the elements change.This study provides guidance for discovering promising AM_(3)X_(5)/AM_(6)X_(6)Kagome materials from a vast phase space.
基金the National Key Research and Development Program of China(Grant No.2020YFA0309604)the National Natural Science Foundation of China(Grant Nos.11834017,61888102,and 12074413)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB30000000 and XDB33000000)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101340001)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G11).
文摘Transition metal dichalcogenides(TMDs),being valley selectively,are an ideal system hosting excitons.Stacking TMDs together to form heterostructure offers an exciting platform to engineer new optical and electronic properties in solid-state systems.However,due to the limited accuracy and repetitiveness of sample preparation,the effects of interlayer coupling on the electronic and excitonic properties have not been systematically investigated.In this report,we study the photoluminescence spectra of bilayer-bilayer MoS_(2)/WS_(2) heterostructure with a typeⅡband alignment.We demonstrate that thermal annealing can increase interlayer coupling in the van der Waals heterostructures,and after thermally induced band hybridization such heterostructure behaves more like an artificial new solid,rather than just the combination of two individual TMD components.We also carry out experimental and theoretical studies of the electric controllable direct and indirect infrared interlayer excitons in such system.Our study reveals the impact of interlayer coupling on interlayer excitons and will shed light on the understanding and engineering of layer-controlled spin-valley configuration in twisted van der Waals heterostructures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974302,11774396,and 11704322)the Shandong Natural Science Funds for Doctoral Program,China(Grant No.ZR2017BA017).
文摘Based on first-principles calculations, Boltzmann transport equation and semiclassical analysis, we conduct a detailed study on the lattice thermal conductivity κL, Seebeck coefficient S, electrical conductivity σ, power factor S2σ and dimensionless figure of merit, zT, for K3IO. It is found that K3IO exhibits relatively low lattice thermal conductivity of 0.93 W·m-1·K-1 at 300 K, which is lower than the value 1.26 W·m-1·K-1 of the classical TE material PbTe. This is due to the smaller phonon group velocity νg and smaller relaxation time τλ. The low lattice thermal conductivity can lead to excellent thermoelectric properties. Thus maximum zT of 2.87 is obtained at 700 K, and the zT = 0.41 at 300 K indicate that K3IO is a potential excellent room temperature TE material. Our research on K3IO shows that it has excellent thermoelectric properties, and it is a promising candidate for applications in fields in terms of thermoelectricity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12025407,11934003,9185012011774328)+1 种基金the Key R&D Program of China(Grant No.2016YFA0300902)the Chinese Academy of Sciences。
文摘Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments.
基金the financial support from the Chinese Academy of Sciences(Grant Nos.ZDBS-LY-SLH007,XDB33020000,and CAS-WX2021PY-0102)the National Natural Science Foundation of China(Grant No.12174428)。
文摘The Cs V_(3)Sb_(5) kagome lattice holds the promise for manifesting electron correlation,topology and superconductivity.However,by far only three Cs V_(3)Sb_(5)-like kagome materials have been experimentally spotted.We enlarge this family of materials to 1386 compounds via element species substitution,and the further screening process suggests that 28 promising candidates have superior thermodynamic stability,hence they are highly likely to be synthesizable.Moreover,these compounds possess several unique electronic structures,and can be categorized into five non-magnetic and three magnetic groups accordingly.It is our hope that this work can greatly expand the viable phase space of the Cs V_(3)Sb_(5)-like materials for investigating or tuning the novel quantum phenomena in kagome lattice.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300902 and2016YFA0202300)the National Basic Research Program of China(Grant No.2015CB921001)+2 种基金the National Natural Science Foundation of China(Grant Nos.1177439691850120 and 11974045)the Strategic Priority Research Program(B)of CAS(Grant Nos.XDB30000000 and XDB330301)supported by U.S.DOE-BES(Grant No.DE-FG02-04ER46148)。
文摘Time-periodic laser driving can create nonequilibrium states not accessible in equilibrium,opening new regimes in materials engineering and topological phase transitions.We report that black phosphorus(BP)exhibits spatially nonuniform topological Floquet-Dirac states under laser illumination,mimicking the"gravity"felt by fermionic quasiparticles in the same way as that for a Schwarzschild black hole(SBH).Quantum tunneling of electrons from a type-ⅡDirac cone(inside BH)to a type-ⅠDirac cone(outside BH)emits an SBH-like Planck radiation spectrum.The Hawking temperature T_H obtained for a fermionic analog of BH in the bilayer BP is approximately 3K,which is several orders of magnitude higher than that in previous works.Our work sheds light on increasing T_H from the perspective of engineering 2D materials by time-periodic light illumination.The predicted SBH-like Hawking radiation,accessible in BP thin films,provides clues to probe analogous astrophysical phenomena in solids.