The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and struct...The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and structural stability is poor during cycling.Among the many modification methods,cation doping has been consistently proven to be an effective strategy for enhancing electrochemical performance.Herein,the NCM811 cathode material was modified by solid-phase reactions with Mg and Al doped.In addition,the corresponding mechanism of NCM811 cathode material-doped modification is explored by density functional theory(DFT)calculations,and we have extended this approach to other ternary cathode materials with different ratios and obtained universal laws.Combined with DFT calculations,the results show that Mg2+occupies the Li+site and reduces the degree of Li^(+)/Ni^(2+) mixture;Al^(3+) acts as a structural support during charging and discharging to prevent structural collapse.The electrochemical properties were tested by an electrochemical workstation and the LAND system,and the results showed that the capacity retention rate increased to varying degrees from 63.66%to 69.87%and 89.05%for NCM811-Mg and NCM811-Al at room temperature after 300 cycles,respectively.This study provides a theoretical basis and design strategy for commercializing cationic-doped modification of nickel-rich cathode materials.展开更多
A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in th...A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.展开更多
It is challenging to balance the cyclability and rate capability of single crystal nickel-rich cathode materials(Ni>0.8).Multicomponent oxides by spray pyrolysis shows potential as highly-reactive precursors to syn...It is challenging to balance the cyclability and rate capability of single crystal nickel-rich cathode materials(Ni>0.8).Multicomponent oxides by spray pyrolysis shows potential as highly-reactive precursors to synthesize single crystal nickel-rich cathode at lower temperature,yet Ni^(2+)will severely inhibit particle growth when Ni content exceeds 0.9.Herein,lithium nitrate(LiNO_(3))with low melting point and strong oxidation is introduced as collaborate lithium salts for fabrication of well-dispersed submicron and micron single crystal LiNi_(0.9)Co_(0.055)Mn_(0.045)O_(2)(NCM90)cathode without extra unit operation.By changing amount of LiNO_(3),particle size regulation is realized and cation disorder can be diminished.The as-prepared material with optimal content of 4 wt%LiNO_(3)(NCM90-4 LN)displays the most appropriate particle size(1μm)with approximately stoichiometric structure,and presents better kinetics characterization of lithium-ion diffusion(15%higher than NCM90)and good electrochemical performance with specific discharge capacity of 220.6 and 173.8 mAh g^(-1) at 0.1 C and 10 C at room temperature,respectively.This work broadens the conventional research methodology of size regulation for single crystal Ni-rich cathode materials and is indispensable for the development of designing principal of nickel-rich cathode materials for lithium-ion batteries.展开更多
(2,3-Dimethylbutyl)(2,4,40-trimethylpentyl)phosphinic acid(INET-3) was impregnated onto dry macroporous resins XAD-16 and pretreated XAD-16 with ethyl alcohol and HCl(Pre-XAD-16) to prepare the solvent impregn...(2,3-Dimethylbutyl)(2,4,40-trimethylpentyl)phosphinic acid(INET-3) was impregnated onto dry macroporous resins XAD-16 and pretreated XAD-16 with ethyl alcohol and HCl(Pre-XAD-16) to prepare the solvent impregnated resins SIRs-INET-3/XAD-16 and SIRs-INET-3/Pre-XAD-16. The molecular weight distribution of the low molecular weight(LMW) polymers washed off by ethyl alcohol during XAD-16 pretreatment was determined by gel permeation chromatography(GPC). The macroporous resins(XAD-16 & Pre-XAD-16), the corresponding solvent impregnated resins(SIRs-INET-3/XAD-16 &SIRs-INET-3/Pre-XAD-16) and the PVA coated SIRs-INET-3/Pre-XAD-16 with boric acid as cross-linking agent were characterized by FT-IR, SEM-EDS and TGA. The effects of XAD-16 pretreatment and PVA coating technology on RE(III) adsorption equilibrium time, INET-3 losses during extraction and adsorption capacity were investigated. The adsorption kinetics, selectivity and stripping behaviors of SIRs-INET-3/XAD-16 were further studied. The washed off LMW polymers had the Mn of 36,656, Mw of 40,310 and polydispersity coefficient of 1.10. The SIRs-INET-3/XAD-16 had shorter equilibrium time,less INET-3 loss and more Tm(III) adsorption capacity than the SIRs-INET-3/Pre-XAD-16. The PVA coated SIRs-INET-3/Pre-XAD-16 had less INET-3 loss and more Tm(III) adsorption capacity but longer equilibrium time than the uncoated SIRs-INET-3/Pre-XAD-16. The adsorption of RE(III) on the SIRsINET-3/XAD-16 followed the pseudo-second-order kinetic model. The Tm(III) accumulative adsorption amounts onto SIRs-INET-3/XAD-16 after eight extraction stages was 23.6 mg/g. The separation factors of adjacent heavy RE(III) β(Er/Ho), β(Tm/Er), β(Yb/Tm) and β(Lu/Yb) values were 1.76, 2.59, 2.56 and 1.19,respectively. The adsorbed Lu(III) onto the SIRs-INET-3/XAD-16 can be stripped completely by 1.0 mol/L H2SO4.展开更多
This work reports a de novo synthesis of novel bifunctional conjugated microporous polymers(CMPs)exhibiting a synergistic-effect involved coordination behavior to uranium.It is highlighted that the synthetic strategy ...This work reports a de novo synthesis of novel bifunctional conjugated microporous polymers(CMPs)exhibiting a synergistic-effect involved coordination behavior to uranium.It is highlighted that the synthetic strategy enables the engineering of the coordination environment within amidoxime functionalized CMP frameworks by specifically introducing ortho-substituted amino functionalities,enhancing the affinity to uranyl ions via forming synergistic complexes.The CMPs exhibit high Brunauer-Emmett-Teller(BET)surface area,well-developed three-dimensional(3D)networks with hierarchical porosity,and favorable chemical and thermal stability because of the covalently cross-linked structure.Compared with the amino-free counterparts,the adsorption capacity of bifunctional CMPs was increased by almost 70%,from 105 to 174 mg/g,indicating evidently enhanced binding ability to uranium.Moreover,new insights into coordination mechanism were obtained by in-depth X-ray photoelectron spectroscopy(XPS)analysis and density functional theory(DFT)calculation,suggesting a dominant role of the oxime ligands forming a 1:1 metal ions/ligands(M/L)coordination model with uranyl ions while demonstrating the synergistic engagement of the amino functionalities via direct binding to uranium center and hydrogen-bonding involved secondary-sphere interaction.This work sheds light on the underlying principles of ortho-substituted functionalities directed synergistic effect to promote the coordination of amidoxime with uranyl ions.And the synthetic strategy established here would enable the task-specific development of more novel CMP-based functional materials for broadened applications.展开更多
Background:Mucosalmelanoma has characteristically distinct genetic features and typically poor prognosis.The lack of representativemucosal melanoma models,especially cell lines,has hindered translational research on t...Background:Mucosalmelanoma has characteristically distinct genetic features and typically poor prognosis.The lack of representativemucosal melanoma models,especially cell lines,has hindered translational research on this melanoma subtype.In this study,we aimed to establish and provide the biological properties,genomic features and the pharmacological profiles of a mucosal melanoma cell line that would contribute to the understanding and treatment optimization of molecularly-defined mucosal melanoma subtype.Methods:The sample was collected from a 67-year-old mucosal melanoma patient and processed into pieces for the establishment of cell line and patientderived xenograft(PDX)model.The proliferation and tumorigenic property of cancer cells from different passageswere evaluated,andwhole-genome sequencing(WGS)was performed on the original tumor,PDX,established cell line,and the matched blood to confirm the establishment and define the genomic features of this cell line.AmpliconArchitect was conducted to depict the architecture of amplified regions detected by WGS.High-throughput drug screening(HTDS)assay including a total of 103 therapeutic agents was implemented on the established cell line,and selected candidate agents were validated in the corresponding PDX model.Results:A mucosal melanoma cell line,MM9H-1,was established which exhibited robust proliferation and tumorigenicity after more than 100 serial passages.Genomic analysis of MM9H-1,corresponding PDX,and the original tumor showed genetic fidelity across genomes,and MM9H-1 was defined as a triple wild-type(TWT)melanoma subtype lacking well-characterized“driver mutations”.Instead,the amplification of several oncogenes,telomerase reverse transcriptase(TERT),v-Rafmurine sarcoma viral oncogene homolog B1(BRAF),melanocyte Inducing transcription factor(MITF)and INO80 complex ATPase subunit(INO80),via large-scale genomic rearrangement potentially contributed to oncogenesis of MM9H-1.Moreover,HTDS identified proteasome inhibitors,especially bortezomib,as promising therapeutic candidates for MM9H-1,which was verified in the corresponding PDX model in vivo.Conclusions:We established and characterized a new mucosal melanoma cell line,MM9H-1,and defined this cell line as a TWT melanoma subtype lacking well-characterized“driver mutations”.The MM9H-1 cell line could be adopted as a unique model for the preclinical investigation of mucosal melanoma.展开更多
基金supported by the National Natural Science Foundation of China(52274307)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and structural stability is poor during cycling.Among the many modification methods,cation doping has been consistently proven to be an effective strategy for enhancing electrochemical performance.Herein,the NCM811 cathode material was modified by solid-phase reactions with Mg and Al doped.In addition,the corresponding mechanism of NCM811 cathode material-doped modification is explored by density functional theory(DFT)calculations,and we have extended this approach to other ternary cathode materials with different ratios and obtained universal laws.Combined with DFT calculations,the results show that Mg2+occupies the Li+site and reduces the degree of Li^(+)/Ni^(2+) mixture;Al^(3+) acts as a structural support during charging and discharging to prevent structural collapse.The electrochemical properties were tested by an electrochemical workstation and the LAND system,and the results showed that the capacity retention rate increased to varying degrees from 63.66%to 69.87%and 89.05%for NCM811-Mg and NCM811-Al at room temperature after 300 cycles,respectively.This study provides a theoretical basis and design strategy for commercializing cationic-doped modification of nickel-rich cathode materials.
基金supported by the National Natural Science Foundation of China(51834008,52022109,52274307,and 21804319)National Key Research and Development Program of China(2021YFC2901100)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462022QZDX008,2462021QNX2010,2462020YXZZ019 and 2462020YXZZ016)State Key Laboratory of Heavy Oil Processing(HON-KFKT2022-10).
文摘A green environmental protection and enhanced leaching process was proposed to recover all elements from spent lithium iron phosphate(LiFePO_(4)) lithium batteries.In order to reduce the influence of Al impurity in the recovery process,NaOH was used to remove impurity.After impurity removal,the spent LiFePO_(4) cathode material was used as raw material under the H_(2)SO_(4) system,and the pressure oxidation leaching process was adopted to achieve the preferential leaching of lithium.The E-pH diagram of the Fe-P-Al-H_(2)O system can determine the stable region of each element in the recovery process of spent LiFePO_(4)Li-batteries.Under the optimal conditions(500 r·min^(-1),15 h,363.15 K,0.4 MPa,the liquid-solid ratio was 4:1 ml·g^(-1)and the acid-material ratio was 0.29),the leaching rate of Li was 99.24%,Fe,Al,and Ti were 0.10%,2.07%,and 0.03%,respectively.The Fe and P were precipitated and recovered as FePO_(4)·2H_(2)O.The kinetic analysis shows that the process of high-pressure acid leaching of spent LiFePO_(4) materials depends on the surface chemical reaction.Through the life cycle assessment(LCA)of the spent LiFePO_(4) whole recovery process,eight midpoint impact categories were selected to assess the impact of recovery process.The results can provide basic environmental information on production process for recycling industry.
基金financially supported by the National Natural Science of China (Grant Nos. 51834008, 51874360)the National Key Research and Development Program of China (Grant No. 2018YFC1902205)。
文摘It is challenging to balance the cyclability and rate capability of single crystal nickel-rich cathode materials(Ni>0.8).Multicomponent oxides by spray pyrolysis shows potential as highly-reactive precursors to synthesize single crystal nickel-rich cathode at lower temperature,yet Ni^(2+)will severely inhibit particle growth when Ni content exceeds 0.9.Herein,lithium nitrate(LiNO_(3))with low melting point and strong oxidation is introduced as collaborate lithium salts for fabrication of well-dispersed submicron and micron single crystal LiNi_(0.9)Co_(0.055)Mn_(0.045)O_(2)(NCM90)cathode without extra unit operation.By changing amount of LiNO_(3),particle size regulation is realized and cation disorder can be diminished.The as-prepared material with optimal content of 4 wt%LiNO_(3)(NCM90-4 LN)displays the most appropriate particle size(1μm)with approximately stoichiometric structure,and presents better kinetics characterization of lithium-ion diffusion(15%higher than NCM90)and good electrochemical performance with specific discharge capacity of 220.6 and 173.8 mAh g^(-1) at 0.1 C and 10 C at room temperature,respectively.This work broadens the conventional research methodology of size regulation for single crystal Ni-rich cathode materials and is indispensable for the development of designing principal of nickel-rich cathode materials for lithium-ion batteries.
基金Project supported by the National Natural Science Foundation of China(21301104)the State Key Laboratory of Chemical Engineering(SKLCh E-14A04)the Fundamental Research Funds for the Central Universities(FRFTP-16-019A3)
文摘(2,3-Dimethylbutyl)(2,4,40-trimethylpentyl)phosphinic acid(INET-3) was impregnated onto dry macroporous resins XAD-16 and pretreated XAD-16 with ethyl alcohol and HCl(Pre-XAD-16) to prepare the solvent impregnated resins SIRs-INET-3/XAD-16 and SIRs-INET-3/Pre-XAD-16. The molecular weight distribution of the low molecular weight(LMW) polymers washed off by ethyl alcohol during XAD-16 pretreatment was determined by gel permeation chromatography(GPC). The macroporous resins(XAD-16 & Pre-XAD-16), the corresponding solvent impregnated resins(SIRs-INET-3/XAD-16 &SIRs-INET-3/Pre-XAD-16) and the PVA coated SIRs-INET-3/Pre-XAD-16 with boric acid as cross-linking agent were characterized by FT-IR, SEM-EDS and TGA. The effects of XAD-16 pretreatment and PVA coating technology on RE(III) adsorption equilibrium time, INET-3 losses during extraction and adsorption capacity were investigated. The adsorption kinetics, selectivity and stripping behaviors of SIRs-INET-3/XAD-16 were further studied. The washed off LMW polymers had the Mn of 36,656, Mw of 40,310 and polydispersity coefficient of 1.10. The SIRs-INET-3/XAD-16 had shorter equilibrium time,less INET-3 loss and more Tm(III) adsorption capacity than the SIRs-INET-3/Pre-XAD-16. The PVA coated SIRs-INET-3/Pre-XAD-16 had less INET-3 loss and more Tm(III) adsorption capacity but longer equilibrium time than the uncoated SIRs-INET-3/Pre-XAD-16. The adsorption of RE(III) on the SIRsINET-3/XAD-16 followed the pseudo-second-order kinetic model. The Tm(III) accumulative adsorption amounts onto SIRs-INET-3/XAD-16 after eight extraction stages was 23.6 mg/g. The separation factors of adjacent heavy RE(III) β(Er/Ho), β(Tm/Er), β(Yb/Tm) and β(Lu/Yb) values were 1.76, 2.59, 2.56 and 1.19,respectively. The adsorbed Lu(III) onto the SIRs-INET-3/XAD-16 can be stripped completely by 1.0 mol/L H2SO4.
基金The study was financially supported by the National Natural Science Foundation of China(Nos.21922604 and 51673109)Innovative Research Team in University(No.IRT13026)+1 种基金Partial support from the U.S.National Science Foundation(No.CBET-1706025)the Robert A.Welch Foundation(No.B-0027)is also acknowledged(S.Q.M.).
文摘This work reports a de novo synthesis of novel bifunctional conjugated microporous polymers(CMPs)exhibiting a synergistic-effect involved coordination behavior to uranium.It is highlighted that the synthetic strategy enables the engineering of the coordination environment within amidoxime functionalized CMP frameworks by specifically introducing ortho-substituted amino functionalities,enhancing the affinity to uranyl ions via forming synergistic complexes.The CMPs exhibit high Brunauer-Emmett-Teller(BET)surface area,well-developed three-dimensional(3D)networks with hierarchical porosity,and favorable chemical and thermal stability because of the covalently cross-linked structure.Compared with the amino-free counterparts,the adsorption capacity of bifunctional CMPs was increased by almost 70%,from 105 to 174 mg/g,indicating evidently enhanced binding ability to uranium.Moreover,new insights into coordination mechanism were obtained by in-depth X-ray photoelectron spectroscopy(XPS)analysis and density functional theory(DFT)calculation,suggesting a dominant role of the oxime ligands forming a 1:1 metal ions/ligands(M/L)coordination model with uranyl ions while demonstrating the synergistic engagement of the amino functionalities via direct binding to uranium center and hydrogen-bonding involved secondary-sphere interaction.This work sheds light on the underlying principles of ortho-substituted functionalities directed synergistic effect to promote the coordination of amidoxime with uranyl ions.And the synthetic strategy established here would enable the task-specific development of more novel CMP-based functional materials for broadened applications.
基金National Natural Science Foundation of China,Grant/Award Number:82002862China Association for Science and Technology,Grant/Award Number:2019QNRC001+3 种基金Shanghai Clinical Research Center for Oral Diseases,Grant/Award Number:19MC1910600CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2019-I2M-5-037Shanghai Municipal Key Clinical Specialty,Grant/Award Number:shslczdzk01601Emerging Frontier Technology Joint Research Project,Grant/Award Number:SHDC12018104。
文摘Background:Mucosalmelanoma has characteristically distinct genetic features and typically poor prognosis.The lack of representativemucosal melanoma models,especially cell lines,has hindered translational research on this melanoma subtype.In this study,we aimed to establish and provide the biological properties,genomic features and the pharmacological profiles of a mucosal melanoma cell line that would contribute to the understanding and treatment optimization of molecularly-defined mucosal melanoma subtype.Methods:The sample was collected from a 67-year-old mucosal melanoma patient and processed into pieces for the establishment of cell line and patientderived xenograft(PDX)model.The proliferation and tumorigenic property of cancer cells from different passageswere evaluated,andwhole-genome sequencing(WGS)was performed on the original tumor,PDX,established cell line,and the matched blood to confirm the establishment and define the genomic features of this cell line.AmpliconArchitect was conducted to depict the architecture of amplified regions detected by WGS.High-throughput drug screening(HTDS)assay including a total of 103 therapeutic agents was implemented on the established cell line,and selected candidate agents were validated in the corresponding PDX model.Results:A mucosal melanoma cell line,MM9H-1,was established which exhibited robust proliferation and tumorigenicity after more than 100 serial passages.Genomic analysis of MM9H-1,corresponding PDX,and the original tumor showed genetic fidelity across genomes,and MM9H-1 was defined as a triple wild-type(TWT)melanoma subtype lacking well-characterized“driver mutations”.Instead,the amplification of several oncogenes,telomerase reverse transcriptase(TERT),v-Rafmurine sarcoma viral oncogene homolog B1(BRAF),melanocyte Inducing transcription factor(MITF)and INO80 complex ATPase subunit(INO80),via large-scale genomic rearrangement potentially contributed to oncogenesis of MM9H-1.Moreover,HTDS identified proteasome inhibitors,especially bortezomib,as promising therapeutic candidates for MM9H-1,which was verified in the corresponding PDX model in vivo.Conclusions:We established and characterized a new mucosal melanoma cell line,MM9H-1,and defined this cell line as a TWT melanoma subtype lacking well-characterized“driver mutations”.The MM9H-1 cell line could be adopted as a unique model for the preclinical investigation of mucosal melanoma.