This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi...This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.展开更多
This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order...This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order integrators with their control inputs constrained within a pre-specified region. A linear transformation for players' dynamics is firstly utilized to facilitate the design of bounded control inputs incorporating multiple saturation functions. By introducing consensus protocols with adaptive and time-varying gains, the unknown actions for players are distributively estimated. Then, a fully distributed Nash equilibrium seeking strategy is exploited, showcasing its remarkable properties: (1) ensuring the boundedness of control inputs;(2) avoiding any global information/parameters;and (3) allowing the graph to be directed. Based on Lyapunov stability analysis, it is theoretically proved that the proposed distributed control strategy can lead all the players' actions to the Nash equilibrium. Finally, an illustrative example is given to validate effectiveness of the proposed method.展开更多
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Mar...This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.展开更多
This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable pro...This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable proof procedure.In particular,an important corollary is obtained,which can give a less conservative upper-bound estimate of the settling time.Based on the backstepping technique and the addition of a power integrator method,a state-feedback controller is skillfully designed for a class of stochastic nonlinear systems.It is proved that the proposed controller can render the closed-loop system fixed-time stable in probability with the help of the proposed fixed-time stability criteria.Finally,the effectiveness of the proposed controller is demonstrated by simulation examples and comparisons.展开更多
Dear Editor, In recent decades, owing to the significance of sampled-data control way on reducing the burden of communication transmission and improving the control capability of networked control systems, the researc...Dear Editor, In recent decades, owing to the significance of sampled-data control way on reducing the burden of communication transmission and improving the control capability of networked control systems, the research of sampled-data systems has become increasingly important(see [1]–[5]).展开更多
This paper considers the problem of distributed online regularized optimization over a network that consists of multiple interacting nodes.Each node is endowed with a sequence of loss functions that are time-varying a...This paper considers the problem of distributed online regularized optimization over a network that consists of multiple interacting nodes.Each node is endowed with a sequence of loss functions that are time-varying and a regularization function that is fixed over time.A distributed forward-backward splitting algorithm is proposed for solving this problem and both fixed and adaptive learning rates are adopted.For both cases,we show that the regret upper bounds scale as O(VT),where T is the time horizon.In particular,those rates match the centralized counterpart.Finally,we show the effectiveness of the proposed algorithms over an online distributed regularized linear regression problem.展开更多
基金supported by the National Natural Science Foundation of China (NSFC)(62222308, 62173181, 62073171, 62221004)the Natural Science Foundation of Jiangsu Province (BK20200744, BK20220139)+3 种基金Jiangsu Specially-Appointed Professor (RK043STP19001)the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities (30920032203)。
文摘This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(62222308,62173181,62073171,62221004)the Natural Science Foundation of Jiangsu Province(BK20220139,BK20200744)+3 种基金Jiangsu Specially-Appointed Professor(RK043STP19001)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2021QNRC001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Fundamental Research Funds for the Central Universities(30920032203)。
文摘This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order integrators with their control inputs constrained within a pre-specified region. A linear transformation for players' dynamics is firstly utilized to facilitate the design of bounded control inputs incorporating multiple saturation functions. By introducing consensus protocols with adaptive and time-varying gains, the unknown actions for players are distributively estimated. Then, a fully distributed Nash equilibrium seeking strategy is exploited, showcasing its remarkable properties: (1) ensuring the boundedness of control inputs;(2) avoiding any global information/parameters;and (3) allowing the graph to be directed. Based on Lyapunov stability analysis, it is theoretically proved that the proposed distributed control strategy can lead all the players' actions to the Nash equilibrium. Finally, an illustrative example is given to validate effectiveness of the proposed method.
基金the National Natural Science Foundation of China (No.60074007).
文摘This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.
基金supported in part by the National Natural Science Foundation of China(62073166,61673215)the Key Laboratory of Jiangsu Province。
文摘This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable proof procedure.In particular,an important corollary is obtained,which can give a less conservative upper-bound estimate of the settling time.Based on the backstepping technique and the addition of a power integrator method,a state-feedback controller is skillfully designed for a class of stochastic nonlinear systems.It is proved that the proposed controller can render the closed-loop system fixed-time stable in probability with the help of the proposed fixed-time stability criteria.Finally,the effectiveness of the proposed controller is demonstrated by simulation examples and comparisons.
基金supported in part by the National Natural Science Foundation of China (61873137, 61973179)the Shandong Taishan Scholar Project (ts20190930)。
文摘Dear Editor, In recent decades, owing to the significance of sampled-data control way on reducing the burden of communication transmission and improving the control capability of networked control systems, the research of sampled-data systems has become increasingly important(see [1]–[5]).
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62022042,62273181 and 62073166)in part by the Fundamental Research Funds for the Central Universities(No.30919011105)in part by the Open Project of the Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment(No.GDSC202017).
文摘This paper considers the problem of distributed online regularized optimization over a network that consists of multiple interacting nodes.Each node is endowed with a sequence of loss functions that are time-varying and a regularization function that is fixed over time.A distributed forward-backward splitting algorithm is proposed for solving this problem and both fixed and adaptive learning rates are adopted.For both cases,we show that the regret upper bounds scale as O(VT),where T is the time horizon.In particular,those rates match the centralized counterpart.Finally,we show the effectiveness of the proposed algorithms over an online distributed regularized linear regression problem.