Based on hourly rain gauge data during May–September of 2016–20,we analyze the spatiotemporal distributions of total rainfall(TR)and short-duration heavy rainfall(SDHR;hourly rainfall≥20 mm)and their diurnal variat...Based on hourly rain gauge data during May–September of 2016–20,we analyze the spatiotemporal distributions of total rainfall(TR)and short-duration heavy rainfall(SDHR;hourly rainfall≥20 mm)and their diurnal variations over the middle reaches of the Yangtze River basin.For all three types of terrain(i.e.,mountain,foothill,and plain),the amount of TR and SDHR both maximize in June/July,and the contribution of SDHR to TR(CST)peaks in August(amount:23%;frequency:1.74%).Foothill rainfall is characterized by a high TR amount and a high CST(in amount);mountain rainfall is characterized by a high TR frequency but a small CST(in amount);and plain rainfall shows a low TR amount and frequency,but a high CST(in amount).Overall,stations with high TR(amount and frequency)are mainly located over the mountains and in the foothills,while those with high SDHR(amount and frequency)are mainly concentrated in the foothills and plains close to mountainous areas.For all three types of terrain,the diurnal variations of both TR and SDHR exhibit a double peak(weak early morning and strong late afternoon)and a phase shift from the early-morning peak to the late-afternoon peak from May to August.Around the late-afternoon peak,the amount of TR and SDHR in the foothills is larger than over the mountains and plains.The TR intensity in the foothills increases significantly from midnight to afternoon,suggesting that thermal instability may play an important role in this process.展开更多
高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键...高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键。随着高时空分辨率再分析资料的出现,高原涡的研究有了更好的数据基础,然而,无论是人工识别方法还是基于较粗分辨率的客观识别算法都难以高效地适用于当前的新再分析资料。因此,亟需发展一种高精度的、适用于高时空分辨率再分析资料的高原涡客观识别方法。本文提出了一种适用于高分辨率再分析资料、基于风场的限制涡度高原涡客观识别算法(Restricted-vorticity based Tibetan-Plateau-vortex Identifying Algorithm,简称RTIA)。该方法首先判断高原涡候选点,然后以候选点为中心,划分多个象限,通过象限平均风场限定条件和象限组逆时针旋转(北半球)条件确定高原涡中心,无需复杂计算及对各气压层分别设定阈值,即可快速实现高原涡的水平和垂直追踪。基于1979~2020年共42个暖季(5~9月)、15466个高原涡(共计99090时次)大样本的评估表明,RTIA方法识别高原涡的平均命中率超过95%,平均空报率低于9%,平均漏报率少于5%,可以十分准确地对高原涡进行识别。此外,评估还表明RTIA方法应用于不同空间分辨率的再分析资料(如0.5°或0.25°)时,仍能保持高原涡识别的高准确率,其识别结果主要受涡旋自身强度的影响,对弱涡旋的识别精度比强涡旋偏低。该方法对其他中尺度涡旋识别也具有一定的借鉴意义。展开更多
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ...Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.展开更多
Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the ...Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the synoptic systems for the PHREs and their possible development mechanisms are investigated.The anomalous cyclonic disturbance over the southern part of the YHRV during type-A events is primarily maintained and intensified by the propagation of Rossby wave energy originating from the northeast Atlantic in the mid–upper troposphere and the northward propagation of Rossby wave packets from the western Pacific in the mid–lower troposphere.The zonal propagation of Rossby wave packets and the northward propagation of Rossby wave packets during type-B events are more coherent than those for type-A events,which induces eastward propagation of stronger anomaly centers of geopotential height from the northeast Atlantic Ocean to the YHRV and a meridional anomaly in geopotential height over the Asian continent.Type-C events have“two ridges and one trough”in the high latitudes of the Eurasian continent,but the anomalous intensity of the western Pacific subtropical high(WPSH)and the trough of the YHRV region are weaker than those for type-A and type-B events.The composite synoptic circulation of four PHREs in 2020 is basically consistent with that of the corresponding PHRE type.The location of the South Asian high(SAH)in three of the PHREs in 2020 moves eastward as in the composite of the three types,but the position of the WPSH of the four PHREs is clearly westward and northward.Two water vapor conveyor belts and two cold air conveyor belts are tracked during the four PHREs in 2020,but the water vapor path from the western Pacific is not seen,which may be caused by the westward extension of the WPSH.展开更多
Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangt...Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow.展开更多
Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key...Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key mechanisms underlying this type of event is the root cause.Since understanding the energetics is crucial to understanding the evolutions of various types of weather systems,a general methodology for investigating energetics of torrential rainfall is provided in this study.By applying this methodology to a persistent torrential rainfall event which had concurrent frontal and warm-sector precipitation,the first physical image on the energetics of the warm-sector torrential rainfall is established.This clarifies the energy sources for producing the warm-sector rainfall during this event.For the first time,fundamental similarities and differences between the warm-sector and frontal torrential rainfall are shown in terms of energetics.It is found that these two types of rainfall mainly differed from each other in the lower-tropospheric dynamical features,and their key differences lay in energy sources.Scale interactions(mainly through downscale energy cascade and transport)were a dominant factor for the warm-sector torrential rainfall during this event,whereas,for the frontal torrential rainfall,they were only of secondary importance.Three typical signals in the background environment are found to have supplied energy to the warm-sector torrential rainfall,with the quasi-biweekly oscillation having contributed the most.展开更多
The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency ban...The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.展开更多
Based on basic equations in isobaric coordinates and the quasi-geostrophic balance,an eddy-flux form budget equation of the divergent wind has been derived. This newly derived budget equation has evident physical sign...Based on basic equations in isobaric coordinates and the quasi-geostrophic balance,an eddy-flux form budget equation of the divergent wind has been derived. This newly derived budget equation has evident physical significance. It can show the intensity of a weather system,the variation of its flow pattern,and the feedback effects from smaller-scale systems(eddy flows). The usefulness of this new budget equation is examined by calculating budgets for the strong divergent-wind centers associated with the South Asian high,and the strong divergence centers over the Tibetan Plateau,during summer(June–August) 2010. The results indicate that the South Asian high significantly interacts with eddy flows. Compared with effects from the mean flow(background circulation),the eddy flows’ feedback influences are of greater importance in determining the flow pattern of the South Asian high. Although the positive divergence centers over the Tibetan Plateau intensify through different mechanisms,certain similarities are also obvious. First,the effects from mean flow are dominant in the rapid intensification process of the positive divergence center. Second,an intense offsetting mechanism exists between the effects associated with the eddy flows’ horizontal component and the effects related to the eddy flows’ convection activities,which weakens the total effects of the eddy flows significantly. Finally,compared with the effects associated with the convection activities of the mean flow,the accumulated effects of the eddy flows’ convection activities may be more favorable for the enhancement of the positive-divergence centers.展开更多
A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO w...A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.展开更多
Warm-sector heavy rainfall (WSHR) events in China have been investigated for many years. Studies have investigated the synoptic weather conditions during WSHR formation, the categories and general features, the trigge...Warm-sector heavy rainfall (WSHR) events in China have been investigated for many years. Studies have investigated the synoptic weather conditions during WSHR formation, the categories and general features, the triggering mechanism, and structural features of mesoscale convective systems during these rainfall events. The main results of WSHR studies in recent years are summarized in this paper. However, WSHR caused by micro- to mesoscale systems often occurs abruptly and locally, making both numerical model predictions and objective forecasts difficult. Further research is needed in three areas:(1) The mechanisms controlling WSHR events need to be understood to clarify the specific effects of various factors and indicate the influences of these factors under different synoptic background circulations. This would enable an understanding of the mechanisms of formation, maintenance, and organization of the convections in WSHR events.(2) In addition to South China, WSHR events also occur during the concentrated summer precipitation in the Yangtze River-Huaihe River Valley and North China. A high spatial and temporal resolution dataset should be used to analyze the distribution and environmental conditions, and to further compare the differences and similarities of the triggering and maintenance mechanisms of WSHR events in different regions.(3) More studies of the mechanisms are required, as well as improvements to the model initial conditions and physical processes based on multi-source observations, especially the description of the triggering process and the microphysical parameterization. This will improve the numerical prediction of WSHR events.展开更多
As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the exam...As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast.展开更多
This paper reviews the major progress on development of the science and prediction of heavy rainfall over China since the beginning of the reform and opening-up of new China(roughly between 1980 and 2019).The progress...This paper reviews the major progress on development of the science and prediction of heavy rainfall over China since the beginning of the reform and opening-up of new China(roughly between 1980 and 2019).The progress of research on the physical mechanisms of heavy rainfall over China is summarized from three perspectives:1)the relevant synoptic weather systems,2)heavy rainfall in major sub-regions of China,and 3)heavy rainfall induced by typhoons.The development and application of forecasting techniques for heavy rainfall are summarized in terms of numerical weather prediction techniques and objective forecasting methods.Greatly aided by the rapid progress in meteorological observing technology and substantial improvement in electronic computing,studies of heavy rainfall in China have advanced to investigating the evolution of heavy-rain-producing storms and observational analysis of the cloud microphysical features.A deeper and more systematic understanding of the synoptic systems of importance to the production of heavy rainfall has also been developed.Operational forecast of heavy rainfall in China has changed from subjective weather event forecasts to a combination of both subjective and objective quantitative precipitation forecasts,and is now advancing toward probabilistic quantitative precipitation forecasts with the provision of forecast uncertainty information.展开更多
Based on a 16-warm-season statistical study on the mesoscale convective systems(MCSs)that were generated over the Tibetan Plateau(TP),11 long-lived eastward propagating MCSs of the same type were selected for a compos...Based on a 16-warm-season statistical study on the mesoscale convective systems(MCSs)that were generated over the Tibetan Plateau(TP),11 long-lived eastward propagating MCSs of the same type were selected for a composite semiidealized simulation and a corresponding no-latent-heating sensitivity run by using the Weather Research and Forecasting(WRF)model.Common evolutionary features and associated mechanisms of this type of long-lived eastward propagating MCS were investigated.Main results are as follows:(i)This type of MCS was generated in a favorable background environment which was characterized by a notable upper-tropospheric divergence south of an upper-level jet,a strong warm advection around a middle-level shortwave trough’s central area,and an instable convective stratification below the trough.Development of the MCS featured rapid increase of cyclonic vorticity in the middle and lower troposphere.The convergence-related vertical stretching and tilting were key factors for the cyclonic-vorticity’s production,and convection-related upward cyclonic-vorticity transport contributed to the upward extending of the MCS.(ii)During the vacating stage of the MCS,it first coupled with a quasistationary Tibetan Plateau vortex(TPV)over the TP’s eastern section,and then decoupled from the vortex.In the former stage,the MCS contributed to maintaining ascending motions and convergence associated with the TPV,which favored its persistence;whereas,in the latter stage,decoupling weakened the TPV-associated convection significantly.This reduced the upward transport of cyclonic vorticity notably,which,together with the negative tilting effect,finally led to the vortex’s dissipation.(iii)After vacating TP,the MCS first weakened due to the disappearance of strong direct sensible heating from the TP on its bottom,and then,under the favorable conditions associated with the shortwave trough over the eastern section of the TP,the MCS redeveloped rapidly.Convergence-related cyclonic-vorticity production in the middle and lower troposphere and upward transport of cyclonic vorticity due to convection governed the MCS’s redevelopment.(iv)Sensitivity simulation shows that latent heating was a necessary condition for the formation and development of the long-lived eastward propagating MCS.On the one hand,this MCS affected the TP’s eastern section and downstream regions directly by inducing precipitation;and on the other hand,it exerted effects on the precipitation over a wider range in the downstream regions by modulating large-scale circulations over and around the TP.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos. U2142202, 41975056, 42230612, and 41975058)Youth Innovation Promotion Association,Chinese Academy of Sciencesthe National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility”(EarthLab)
文摘Based on hourly rain gauge data during May–September of 2016–20,we analyze the spatiotemporal distributions of total rainfall(TR)and short-duration heavy rainfall(SDHR;hourly rainfall≥20 mm)and their diurnal variations over the middle reaches of the Yangtze River basin.For all three types of terrain(i.e.,mountain,foothill,and plain),the amount of TR and SDHR both maximize in June/July,and the contribution of SDHR to TR(CST)peaks in August(amount:23%;frequency:1.74%).Foothill rainfall is characterized by a high TR amount and a high CST(in amount);mountain rainfall is characterized by a high TR frequency but a small CST(in amount);and plain rainfall shows a low TR amount and frequency,but a high CST(in amount).Overall,stations with high TR(amount and frequency)are mainly located over the mountains and in the foothills,while those with high SDHR(amount and frequency)are mainly concentrated in the foothills and plains close to mountainous areas.For all three types of terrain,the diurnal variations of both TR and SDHR exhibit a double peak(weak early morning and strong late afternoon)and a phase shift from the early-morning peak to the late-afternoon peak from May to August.Around the late-afternoon peak,the amount of TR and SDHR in the foothills is larger than over the mountains and plains.The TR intensity in the foothills increases significantly from midnight to afternoon,suggesting that thermal instability may play an important role in this process.
文摘高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键。随着高时空分辨率再分析资料的出现,高原涡的研究有了更好的数据基础,然而,无论是人工识别方法还是基于较粗分辨率的客观识别算法都难以高效地适用于当前的新再分析资料。因此,亟需发展一种高精度的、适用于高时空分辨率再分析资料的高原涡客观识别方法。本文提出了一种适用于高分辨率再分析资料、基于风场的限制涡度高原涡客观识别算法(Restricted-vorticity based Tibetan-Plateau-vortex Identifying Algorithm,简称RTIA)。该方法首先判断高原涡候选点,然后以候选点为中心,划分多个象限,通过象限平均风场限定条件和象限组逆时针旋转(北半球)条件确定高原涡中心,无需复杂计算及对各气压层分别设定阈值,即可快速实现高原涡的水平和垂直追踪。基于1979~2020年共42个暖季(5~9月)、15466个高原涡(共计99090时次)大样本的评估表明,RTIA方法识别高原涡的平均命中率超过95%,平均空报率低于9%,平均漏报率少于5%,可以十分准确地对高原涡进行识别。此外,评估还表明RTIA方法应用于不同空间分辨率的再分析资料(如0.5°或0.25°)时,仍能保持高原涡识别的高准确率,其识别结果主要受涡旋自身强度的影响,对弱涡旋的识别精度比强涡旋偏低。该方法对其他中尺度涡旋识别也具有一定的借鉴意义。
基金supported jointly by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441401)the National Natural Science Foundation of China (Grant Nos. 41405007, 41175043, 41475002, and 41205027)
文摘Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.
基金This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090101)National Natural Science Foundation of China(Grant No.41975056).
文摘Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the synoptic systems for the PHREs and their possible development mechanisms are investigated.The anomalous cyclonic disturbance over the southern part of the YHRV during type-A events is primarily maintained and intensified by the propagation of Rossby wave energy originating from the northeast Atlantic in the mid–upper troposphere and the northward propagation of Rossby wave packets from the western Pacific in the mid–lower troposphere.The zonal propagation of Rossby wave packets and the northward propagation of Rossby wave packets during type-B events are more coherent than those for type-A events,which induces eastward propagation of stronger anomaly centers of geopotential height from the northeast Atlantic Ocean to the YHRV and a meridional anomaly in geopotential height over the Asian continent.Type-C events have“two ridges and one trough”in the high latitudes of the Eurasian continent,but the anomalous intensity of the western Pacific subtropical high(WPSH)and the trough of the YHRV region are weaker than those for type-A and type-B events.The composite synoptic circulation of four PHREs in 2020 is basically consistent with that of the corresponding PHRE type.The location of the South Asian high(SAH)in three of the PHREs in 2020 moves eastward as in the composite of the three types,but the position of the WPSH of the four PHREs is clearly westward and northward.Two water vapor conveyor belts and two cold air conveyor belts are tracked during the four PHREs in 2020,but the water vapor path from the western Pacific is not seen,which may be caused by the westward extension of the WPSH.
基金supported by the National Key Basic Research and Development Project of China(Grant No.2012CB417201)the National Natural Science Foundation of China(Grant Nos.41375053 and 41505038)
文摘Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow.
基金supported by the National Key R&D Program of China (Grant No. 2018YFC1507400)the National Natural Science Foundation of China (Grant Nos. 42075002 and 42030610)
文摘Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key mechanisms underlying this type of event is the root cause.Since understanding the energetics is crucial to understanding the evolutions of various types of weather systems,a general methodology for investigating energetics of torrential rainfall is provided in this study.By applying this methodology to a persistent torrential rainfall event which had concurrent frontal and warm-sector precipitation,the first physical image on the energetics of the warm-sector torrential rainfall is established.This clarifies the energy sources for producing the warm-sector rainfall during this event.For the first time,fundamental similarities and differences between the warm-sector and frontal torrential rainfall are shown in terms of energetics.It is found that these two types of rainfall mainly differed from each other in the lower-tropospheric dynamical features,and their key differences lay in energy sources.Scale interactions(mainly through downscale energy cascade and transport)were a dominant factor for the warm-sector torrential rainfall during this event,whereas,for the frontal torrential rainfall,they were only of secondary importance.Three typical signals in the background environment are found to have supplied energy to the warm-sector torrential rainfall,with the quasi-biweekly oscillation having contributed the most.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1507403)。
文摘The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.
基金supported by the National Natural Science Foundation of China (Grant Nos.91637211,41205027 and 41375053)the National Key Basic Research and Development Project of China (Grant No.2012CB417201)
文摘Based on basic equations in isobaric coordinates and the quasi-geostrophic balance,an eddy-flux form budget equation of the divergent wind has been derived. This newly derived budget equation has evident physical significance. It can show the intensity of a weather system,the variation of its flow pattern,and the feedback effects from smaller-scale systems(eddy flows). The usefulness of this new budget equation is examined by calculating budgets for the strong divergent-wind centers associated with the South Asian high,and the strong divergence centers over the Tibetan Plateau,during summer(June–August) 2010. The results indicate that the South Asian high significantly interacts with eddy flows. Compared with effects from the mean flow(background circulation),the eddy flows’ feedback influences are of greater importance in determining the flow pattern of the South Asian high. Although the positive divergence centers over the Tibetan Plateau intensify through different mechanisms,certain similarities are also obvious. First,the effects from mean flow are dominant in the rapid intensification process of the positive divergence center. Second,an intense offsetting mechanism exists between the effects associated with the eddy flows’ horizontal component and the effects related to the eddy flows’ convection activities,which weakens the total effects of the eddy flows significantly. Finally,compared with the effects associated with the convection activities of the mean flow,the accumulated effects of the eddy flows’ convection activities may be more favorable for the enhancement of the positive-divergence centers.
基金This study was supported by the National Key R&D Program of China through Grant Nos.2018YFC1505901 and 2018YFA0606203the National Nature Science Foundation of China through Grant Nos.41922035,41575062,41520104008+1 种基金Key Research Program of Frontier Sciences of CAS through Grant No.QYZDB-SSW-DQC017the Youth Innovation Promotion Association,Chinese Academy of Sciences.The first author acknowledges the support from the China Scholarship Council(CSC)Grant No.201904910516.
文摘A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.
基金supported by the National Natural Science Foundation of China (Grant No. 41675045)National Key R&D Program of China (Grant No. 2018YFC1507200)the Jiangxi Key Basic Research and Development Project of China (Grant No. 20171BBG70005)
文摘Warm-sector heavy rainfall (WSHR) events in China have been investigated for many years. Studies have investigated the synoptic weather conditions during WSHR formation, the categories and general features, the triggering mechanism, and structural features of mesoscale convective systems during these rainfall events. The main results of WSHR studies in recent years are summarized in this paper. However, WSHR caused by micro- to mesoscale systems often occurs abruptly and locally, making both numerical model predictions and objective forecasts difficult. Further research is needed in three areas:(1) The mechanisms controlling WSHR events need to be understood to clarify the specific effects of various factors and indicate the influences of these factors under different synoptic background circulations. This would enable an understanding of the mechanisms of formation, maintenance, and organization of the convections in WSHR events.(2) In addition to South China, WSHR events also occur during the concentrated summer precipitation in the Yangtze River-Huaihe River Valley and North China. A high spatial and temporal resolution dataset should be used to analyze the distribution and environmental conditions, and to further compare the differences and similarities of the triggering and maintenance mechanisms of WSHR events in different regions.(3) More studies of the mechanisms are required, as well as improvements to the model initial conditions and physical processes based on multi-source observations, especially the description of the triggering process and the microphysical parameterization. This will improve the numerical prediction of WSHR events.
基金supported by the National Key R&D Project(Grant No.2021YFC3000903)the National Natural Science Foundation of China(Grant Nos.42275013,42030611,42075002)+2 种基金the CMA Innovation Foundation(Grant No.CXFZ2023J001)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2023LASW-B05)the Key Foundation of Zhejiang Provincial Department of Science and Technology(Grant No.2022C03150)。
文摘As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast.
基金Supported by the National Key Research and Development Program of China(2018YFC1507400)National Natural Science Foundation of China(41775050).
文摘This paper reviews the major progress on development of the science and prediction of heavy rainfall over China since the beginning of the reform and opening-up of new China(roughly between 1980 and 2019).The progress of research on the physical mechanisms of heavy rainfall over China is summarized from three perspectives:1)the relevant synoptic weather systems,2)heavy rainfall in major sub-regions of China,and 3)heavy rainfall induced by typhoons.The development and application of forecasting techniques for heavy rainfall are summarized in terms of numerical weather prediction techniques and objective forecasting methods.Greatly aided by the rapid progress in meteorological observing technology and substantial improvement in electronic computing,studies of heavy rainfall in China have advanced to investigating the evolution of heavy-rain-producing storms and observational analysis of the cloud microphysical features.A deeper and more systematic understanding of the synoptic systems of importance to the production of heavy rainfall has also been developed.Operational forecast of heavy rainfall in China has changed from subjective weather event forecasts to a combination of both subjective and objective quantitative precipitation forecasts,and is now advancing toward probabilistic quantitative precipitation forecasts with the provision of forecast uncertainty information.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFC1507606)the National Natural Science Foundation of China(Grant Nos.41775046,42075002,91637211,and 42030611)+1 种基金the Foundation of Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province(Grant No.SZKT202001)the Youth Innovation Promotion Association,Chinese Academy of Sciences.
文摘Based on a 16-warm-season statistical study on the mesoscale convective systems(MCSs)that were generated over the Tibetan Plateau(TP),11 long-lived eastward propagating MCSs of the same type were selected for a composite semiidealized simulation and a corresponding no-latent-heating sensitivity run by using the Weather Research and Forecasting(WRF)model.Common evolutionary features and associated mechanisms of this type of long-lived eastward propagating MCS were investigated.Main results are as follows:(i)This type of MCS was generated in a favorable background environment which was characterized by a notable upper-tropospheric divergence south of an upper-level jet,a strong warm advection around a middle-level shortwave trough’s central area,and an instable convective stratification below the trough.Development of the MCS featured rapid increase of cyclonic vorticity in the middle and lower troposphere.The convergence-related vertical stretching and tilting were key factors for the cyclonic-vorticity’s production,and convection-related upward cyclonic-vorticity transport contributed to the upward extending of the MCS.(ii)During the vacating stage of the MCS,it first coupled with a quasistationary Tibetan Plateau vortex(TPV)over the TP’s eastern section,and then decoupled from the vortex.In the former stage,the MCS contributed to maintaining ascending motions and convergence associated with the TPV,which favored its persistence;whereas,in the latter stage,decoupling weakened the TPV-associated convection significantly.This reduced the upward transport of cyclonic vorticity notably,which,together with the negative tilting effect,finally led to the vortex’s dissipation.(iii)After vacating TP,the MCS first weakened due to the disappearance of strong direct sensible heating from the TP on its bottom,and then,under the favorable conditions associated with the shortwave trough over the eastern section of the TP,the MCS redeveloped rapidly.Convergence-related cyclonic-vorticity production in the middle and lower troposphere and upward transport of cyclonic vorticity due to convection governed the MCS’s redevelopment.(iv)Sensitivity simulation shows that latent heating was a necessary condition for the formation and development of the long-lived eastward propagating MCS.On the one hand,this MCS affected the TP’s eastern section and downstream regions directly by inducing precipitation;and on the other hand,it exerted effects on the precipitation over a wider range in the downstream regions by modulating large-scale circulations over and around the TP.