A subgroup H of a finite group G is called a TI-subgroup if H ∩ H^x = 1 or H for all x ∈ G. In this paper, a complete classification for finite p-groups, in which all abelian subgroups are TI-subgroups, is given.
Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F a...Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.展开更多
For a finite group G, let T(G) denote a set of primes such that a prime p belongs to T(G) if and only if p is a divisor of the index of some maximal subgroup of G. It is proved that if G satisfies any one of the f...For a finite group G, let T(G) denote a set of primes such that a prime p belongs to T(G) if and only if p is a divisor of the index of some maximal subgroup of G. It is proved that if G satisfies any one of the following conditions: (1) G has a p-complement for each p∈T(G); (2)│T(G)│= 2: (3) the normalizer of a Sylow p-subgroup of G has prime power index for each odd prime p∈T(G); then G either is solvable or G/Sol(G)≌PSL(2, 7) where Sol(G) is the largest solvable normal subgroup of G.展开更多
基金the Natural Science Foundation of China(10161001)the Natural Science Foundation of Guangxi of China+1 种基金the National Natural Science Foundation of Shanghai Education CommitteeSpecial Funds for Major Specialities of Shanghai Education Committee
文摘A subgroup H of a finite group G is called a TI-subgroup if H ∩ H^x = 1 or H for all x ∈ G. In this paper, a complete classification for finite p-groups, in which all abelian subgroups are TI-subgroups, is given.
基金the Natural Science Foundation of Chinathe Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
文摘Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.
基金Supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Guangxi Autonomous Region (No.0249001)
文摘For any saturated formation F of finite groups containing all supersolvable groups, the groups in F are characterized by F-abnormal maximal subgroups.
基金Project supported by the National Natural Science Foundation of China(No.10161001)the Natural Science Foundation of Guangxi of China(0249001)
文摘For a finite group G, let T(G) denote a set of primes such that a prime p belongs to T(G) if and only if p is a divisor of the index of some maximal subgroup of G. It is proved that if G satisfies any one of the following conditions: (1) G has a p-complement for each p∈T(G); (2)│T(G)│= 2: (3) the normalizer of a Sylow p-subgroup of G has prime power index for each odd prime p∈T(G); then G either is solvable or G/Sol(G)≌PSL(2, 7) where Sol(G) is the largest solvable normal subgroup of G.