Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)d...Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN.展开更多
This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination ...This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.展开更多
基金the National Natural Science Foundation of China(No.52074157)Shenzhen Science and Technology Innovation Com-mission,China(Nos.JSGG20180508152608855,KQTD20170328154443162)Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials,China(No.ZDSYS201703031748354).
文摘Based on volume of fluid(VoF)interface capturing method and shear-stress transport(SST)k-ω turbulence model,numerical simulation was performed to reveal the flow mechanism of metal melts in melt delivery nozzle(MDN)during gas atomization(GA)process.The experimental validation indicated that the numerical models could give a reasonable prediction on the melt flow process in the MDN.With the decrease of the MDN inner-diameter,the melt flow resistance increased for both molten aluminum and iron,especially achieving an order of 10^(2) kPa in the case of the MDN inner-diameter≤1 mm.Based on the conventional GA process,the positive pressure was imposed on the viscous aluminum alloy melt to overcome its flow resistance in the MDN,thus producing powders under different MDN inner-diameters.When the MDN inner-diameter was reduced from 4 to 2 mm,the yield of fine powder(<150μm)soared from 54.7%to 94.2%.The surface quality of powders has also been improved when using a smaller inner-diameter MDN.
基金Project supported by the National Natural Science Foundation of China(Nos.1120115911426102+4 种基金and 11571293)the Natural Science Foundation of Hunan Province(No.11JJ3135)the Foundation for Outstanding Young Teachers in Higher Education of Guangdong Province(No.Yq2013054)the Pearl River S&T Nova Program of Guangzhou(No.2013J2200063)the Construct Program of the Key Discipline in Hunan University of Science and Engineering
文摘This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.