The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detecti...The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.展开更多
A ground data analysis center is very important to the success of a mission.We introduce the Science Operations and Data Center(SODC)for the ASO-S mission,which consists of a scientific operation subcenter,a data mana...A ground data analysis center is very important to the success of a mission.We introduce the Science Operations and Data Center(SODC)for the ASO-S mission,which consists of a scientific operation subcenter,a data management subcenter,a data analysis subcenter and a user service subcenter.The mission planning process,instrument observation modes and the data volume are presented.We describe the data flow and processing procedures from spacecraft telemetry to high-level science data,and the long-term archival as well.The data policy and distributions are also briefly introduced.展开更多
Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response ...Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.展开更多
The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals o...The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals of DAMPE is to observe Ge V-Te V high energy γ-rays with accurate energy,angular and time resolution,to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays,it is challenging to identify γ-rays with sufficiently high efficiency,minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations,using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at~10 Ge V amounts to less than 1% of the selected sample.Finally,we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.展开更多
The Plastic Scintillator Detector(PSD) onboard the DArk Matter Particle Explorer(DAMPE)is designed to measure cosmic ray charge(Z) and to act as a veto detector for gamma ray identification.To fully exploit the charge...The Plastic Scintillator Detector(PSD) onboard the DArk Matter Particle Explorer(DAMPE)is designed to measure cosmic ray charge(Z) and to act as a veto detector for gamma ray identification.To fully exploit the charge identification potential of PSD and to enhance its capability to identify gamma ray events, we develop an alignment method for the PSD. The path length of a given track in the volume of a PSD bar is derived taking into account the shift and rotation alignment corrections. By examining energy spectra of corner-passing events and fully contained events, position shifts and rotations of all PSD bars are obtained, and are found to be on average about 1 mm and 0.0015 radian respectively. To validate the alignment method, we introduce artificial shifts and rotations of PSD bars into the detector simulation.These shift and rotation parameters can be recovered successfully by the alignment procedure. As a result of the PSD alignment procedure, the charge resolution of the PSD is improved from 4% to 8%, depending on the nuclei.展开更多
The DArk Matter Particle Explorer(DAMPE)can measureγ-rays in the energy range from a few GeV to about 10 TeV.The direction of eachγ-ray photon is reconstructed in the DAMPE payload reference system.To convert this t...The DArk Matter Particle Explorer(DAMPE)can measureγ-rays in the energy range from a few GeV to about 10 TeV.The direction of eachγ-ray photon is reconstructed in the DAMPE payload reference system.To convert this to celestial coordinates,we require the celestial orientation of the payload system,which,however,may slightly deviate from that of the satellite system provided by the star-tracker.In this paper,we adopt a maximum likelihood method and use theγ-rays centered around several bright point-like sources to measure and correct the angular deviations between the DAMPE payload and satellite system,the so-called"boresight alignment".We also check our method of boresight alignment for some sets of simulation data with artificial orientations and obtain consistent results.The time-dependent boresight alignment analysis does not show evidence for significant variation of the parameters.展开更多
The DArk Matter Particle Explorer(DAMPE)is a satellite-borne detector for high-energy cosmic rays and y-rays.To fully understand the detector performance and obtain reliable physical results,extensive simulations of t...The DArk Matter Particle Explorer(DAMPE)is a satellite-borne detector for high-energy cosmic rays and y-rays.To fully understand the detector performance and obtain reliable physical results,extensive simulations of the detector are necessary.The simulations are particularly important for the data analysis of cosmic ray nuclei,which relies closely on the hadronic and nuclear interactions of particles in the detector material.Widely adopted simulation softwares include the GEANT4 and FLUKA,both of which have been implemented for the DAMPE simulation tool.Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from the two simulation softwares.Such a comparison gives an estimate of the most significant uncertainties of our proton spectral analysis.展开更多
4U 1822-371 is a typical edge-on eclipsing low mass X-ray binary and the prototype of accre- tion disk coronal sources. We report on the results of a spectral analysis over the energy range 0.5-45 keV observed by Suza...4U 1822-371 is a typical edge-on eclipsing low mass X-ray binary and the prototype of accre- tion disk coronal sources. We report on the results of a spectral analysis over the energy range 0.5-45 keV observed by Suzaku in 2006. We extract spectra from five orbital phases. The spectra can be equally well described by various previously proposed models: an optically thick model described by a partially cov- ered cutoff power law and an optically thin model described by a blackbody plus a cutoff power law. The optically thick model requires a covering fraction of about 55%, while the optically thin model requires a temperature of the central source of about 0.16 keV. The spectrum in the optically thick model also shows the previously detected cyclotron line feature at ~30 keV with the same Suzaku observation. This fea- ture confirms the presence of a strong magnetic field. The Fe Ks fluorescent line strengths as well as the detected Fe xxvI strengths are similar to previous Chandra and XMM-Newton detections in our phased spectral analysis; however, we also observe strong Fe xxvI during the eclipse, which indicates a slightly larger central corona.展开更多
Precise measurements of the energy spectra of cosmic rays(CRs)show various kinds of features deviating from single power-laws,which give very interesting and important implications on their origin and propagation.Prev...Precise measurements of the energy spectra of cosmic rays(CRs)show various kinds of features deviating from single power-laws,which give very interesting and important implications on their origin and propagation.Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons(and probably also for Helium nuclei).Very recently,the DArk Matter Particle Explorer(DAMPE)measurement about the proton spectrum clearly reveals such a softening with a high significance.Here we study the implications of these new measurements,as well as the groundbased indirect measurements,on the origin of CRs.We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously.In the framework of multiple components,we discuss two possible scenarios,the multiple source population scenario and the background plus nearby source scenario.Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies.Considering the anisotropy observations,the nearby source model is favored.展开更多
The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detecti...The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e^(+)e^(-) pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFA0718404)the National Natural Science Foundation of China(Nos.12220101003,12173098,U2031149)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(CAS)(No.YSBR-061)the Scientific Instrument Developing Project of CAS(No.GJJSTD20210009)the Youth Innovation Promotion Association of CAS,and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20220197).
文摘The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11203083, 11427803 and U1731241)supported by the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15052200 and XDA15320300)
文摘A ground data analysis center is very important to the success of a mission.We introduce the Science Operations and Data Center(SODC)for the ASO-S mission,which consists of a scientific operation subcenter,a data management subcenter,a data analysis subcenter and a user service subcenter.The mission planning process,instrument observation modes and the data volume are presented.We describe the data flow and processing procedures from spacecraft telemetry to high-level science data,and the long-term archival as well.The data policy and distributions are also briefly introduced.
基金supported in part by the National Key Program for Research and Development (2016YFA0400200)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB23040000)+3 种基金the 13th Five-year Informatization Plan of Chinese Academy of Sciences (XXH13506)the National Natural Science Foundation of China (Nos. U1631111, U1738123, U1738136 and U1738210)Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Young Elite Scientists Sponsorship Program
文摘Observing GeV gamma-rays is an important goal of the DArk Matter Particle Explorer(DAMPE)for indirect dark matter searching and high energy astrophysics. In this work, we present a set of accurate instrument response functions for DAMPE(DmpIRFs) including the effective area, point-spread function and energy dispersion, which are crucial for gamma-ray data analysis based on statistics from simulation data. A dedicated software named DmpST is developed to facilitate the scientific analyses of DAMPE gamma-ray data. Considering the limited number of photons and angular resolution of DAMPE, the maximum likelihood method is adopted in DmpST to better disentangle different source components. The basic mathematics and framework regarding this software are also introduced in this paper.
基金founded by the strategic priority science and technology projects in space science of the Chinese Academy of Sciences (Nos.XDA04040000 and XDA04040400)supported in part by the National Key Research and Development Program of China (2016YFA0400200)+7 种基金the National Basic Research Program of China (No.2013CB837000)the Strategic Priority Research Program of the Chinese Academy of Sciences “Multi-Waveband Gravitational Wave Universe” (No.XDB23040000)Youth Innovation Promotion Association of CASthe National Natural Science Foundation of China (Nos.11525313,11673075,11773086,11303107,11303105,11773085,U1738123,U1738136,U1738207 and U1738210)the Young Elite Scientists Sponsorship program by CAST (No.YESS20160196)the 100 Talents Program of Chinese Academy of Sciencessupport by the Swiss National Science Foundation (SNSF)Switzerland and the National Institute for Nuclear Physics (INFN),Italy
文摘The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals of DAMPE is to observe Ge V-Te V high energy γ-rays with accurate energy,angular and time resolution,to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays,it is challenging to identify γ-rays with sufficiently high efficiency,minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations,using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at~10 Ge V amounts to less than 1% of the selected sample.Finally,we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.
基金funded by the National Key Program for Research and Development (2016YFA0400200)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB23040000)the National Natural Science Foundation of China (Grant Nos. 11773086, U1738205, U1738127, 11673021, 11673047, 11673075, 11643011, 11773085, U1738207, U1738138, U1631111, U1738129 and 11703062)
文摘The Plastic Scintillator Detector(PSD) onboard the DArk Matter Particle Explorer(DAMPE)is designed to measure cosmic ray charge(Z) and to act as a veto detector for gamma ray identification.To fully exploit the charge identification potential of PSD and to enhance its capability to identify gamma ray events, we develop an alignment method for the PSD. The path length of a given track in the volume of a PSD bar is derived taking into account the shift and rotation alignment corrections. By examining energy spectra of corner-passing events and fully contained events, position shifts and rotations of all PSD bars are obtained, and are found to be on average about 1 mm and 0.0015 radian respectively. To validate the alignment method, we introduce artificial shifts and rotations of PSD bars into the detector simulation.These shift and rotation parameters can be recovered successfully by the alignment procedure. As a result of the PSD alignment procedure, the charge resolution of the PSD is improved from 4% to 8%, depending on the nuclei.
基金founded by the strategic priority science and technology projects in space science of the Chinese Academy of Sciences(Nos.XDA04040000 and XDA04040400)supported in part by the National Key Program for Research and Development(No.2016YFA0400200)+5 种基金the National Basic Research Program(No.2013CB837000)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)"Multi-Waveband Gravitational Wave Universe”(No.XDB23040000)the Strategic Priority Research Program of CAS(No.XDB23040000)the Youth Innovation Promotion Association of CAS,the National Natural Science Foundation of China(Nos.U1738123 and U1631111)the 100 Talents program of Chinese Academy of Sciences and the Young Elite Scientists Sponsorship Programsupport by the Swiss National Science Foundation(SNSF),Switzerland and the National Institute for Nuclear Physics(INFN),Italy。
文摘The DArk Matter Particle Explorer(DAMPE)can measureγ-rays in the energy range from a few GeV to about 10 TeV.The direction of eachγ-ray photon is reconstructed in the DAMPE payload reference system.To convert this to celestial coordinates,we require the celestial orientation of the payload system,which,however,may slightly deviate from that of the satellite system provided by the star-tracker.In this paper,we adopt a maximum likelihood method and use theγ-rays centered around several bright point-like sources to measure and correct the angular deviations between the DAMPE payload and satellite system,the so-called"boresight alignment".We also check our method of boresight alignment for some sets of simulation data with artificial orientations and obtain consistent results.The time-dependent boresight alignment analysis does not show evidence for significant variation of the parameters.
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFA0400200)the National Natural Science Foundation of China(Grant Nos.11722328,11773085,U1738127,U1738138,U1738205,U1738207,and 11851305)+4 种基金the 100 Talents Program of Chinese Academy of Sciencesthe Youth Innovation Promotion Association CASthe Program for Innovative Talents and Entrepreneur in Jiangsusupported by the Swiss National Science Foundation(SNSF),Switzerlandthe National Institute for Nuclear Physics(INFN),Italy。
文摘The DArk Matter Particle Explorer(DAMPE)is a satellite-borne detector for high-energy cosmic rays and y-rays.To fully understand the detector performance and obtain reliable physical results,extensive simulations of the detector are necessary.The simulations are particularly important for the data analysis of cosmic ray nuclei,which relies closely on the hadronic and nuclear interactions of particles in the detector material.Widely adopted simulation softwares include the GEANT4 and FLUKA,both of which have been implemented for the DAMPE simulation tool.Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from the two simulation softwares.Such a comparison gives an estimate of the most significant uncertainties of our proton spectral analysis.
基金supported by the National Natural Science Foundation of China(Grant No.11273062)supported by the 100 talents program of the Chinese Academy of Sciences
文摘4U 1822-371 is a typical edge-on eclipsing low mass X-ray binary and the prototype of accre- tion disk coronal sources. We report on the results of a spectral analysis over the energy range 0.5-45 keV observed by Suzaku in 2006. We extract spectra from five orbital phases. The spectra can be equally well described by various previously proposed models: an optically thick model described by a partially cov- ered cutoff power law and an optically thin model described by a blackbody plus a cutoff power law. The optically thick model requires a covering fraction of about 55%, while the optically thin model requires a temperature of the central source of about 0.16 keV. The spectrum in the optically thick model also shows the previously detected cyclotron line feature at ~30 keV with the same Suzaku observation. This fea- ture confirms the presence of a strong magnetic field. The Fe Ks fluorescent line strengths as well as the detected Fe xxvI strengths are similar to previous Chandra and XMM-Newton detections in our phased spectral analysis; however, we also observe strong Fe xxvI during the eclipse, which indicates a slightly larger central corona.
基金the Na-tional Key Research and Development Program of China(No.2016YFA0400200)the National Natural Science Foundation of China(Nos.11722328,11525313,U1738205,and 11851305)the 100 Talents Program of Chinese Academy of Sciences.
文摘Precise measurements of the energy spectra of cosmic rays(CRs)show various kinds of features deviating from single power-laws,which give very interesting and important implications on their origin and propagation.Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons(and probably also for Helium nuclei).Very recently,the DArk Matter Particle Explorer(DAMPE)measurement about the proton spectrum clearly reveals such a softening with a high significance.Here we study the implications of these new measurements,as well as the groundbased indirect measurements,on the origin of CRs.We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously.In the framework of multiple components,we discuss two possible scenarios,the multiple source population scenario and the background plus nearby source scenario.Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies.Considering the anisotropy observations,the nearby source model is favored.
基金The DAMPE mission was funded by the strategic priority science and technology projects in space science of Chinese Academy of SciencesIn China the data analysis is supported in part by the National Key Research and Development Program of China(No.2016YFA0400200)+2 种基金the National Natural Science Foundation of China(Nos.U1738210,U1738123,U1738205,U1738138,11921003,and 12003074)the Youth Innovation Promotion Association CAS,the Key Research Program of the Chinese Academy of Sciences Grant(No.ZDRW-KT-2019-5)the Entrepreneurship and Innovation Program of Jiangsu Province.
文摘The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e^(+)e^(-) pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.