期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Oilfield analogy and productivity prediction based on machine learning: Field cases in PL oilfield, China
1
作者 Wen-Peng Bai shi-qing cheng +3 位作者 Xin-Yang Guo Yang Wang Qiao Guo Chao-Dong Tan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2554-2570,共17页
In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this... In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development. 展开更多
关键词 Data mining technique Analogy parameters Oilfield analogy Productivity prediction Software platform
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
2
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu shi-qing cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity Two-phase flow Pressure transient analysis
下载PDF
A compositional model for CO_(2) ooding including CO_(2) equilibria between water and oil using the Peng–Robinson equation of state with the Wong–Sandler mixing rule 被引量:4
3
作者 Zhong-Lin Yang Hai-Yang Yu +2 位作者 Zhe-Wei Chen shi-qing cheng Jian-Zheng 《Petroleum Science》 SCIE CAS CSCD 2019年第4期874-889,共16页
This paper presents a three-dimensional, three-phase compositional model considering CO2 phase equilibrium between water and oil. In this model, CO2 is mutually soluble in aqueous and hydrocarbon phases, while other c... This paper presents a three-dimensional, three-phase compositional model considering CO2 phase equilibrium between water and oil. In this model, CO2 is mutually soluble in aqueous and hydrocarbon phases, while other components, except water,exist in hydrocarbon phase. The Peng–Robinson(PR) equation of state and the Wong–Sandler mixing rule with non-random two-liquid parameters are used to calculate CO2 fugacity in the aqueous phase. One-dimensional and three-dimensional CO2 flooding examples show that a significant amount of injected CO2 is dissolved in water. Our simulation shows 7% of injected CO2 can be dissolved in the aqueous phase, which delays oil recovery by 4%. The gas rate predicted by the model is smaller than the conventional model as long as water is undersaturated by CO2, which can be considered as 'lost' in the aqueous phase. The model also predicts that the delayed oil can be recovered after the gas breakthrough, indicating that delayed oil is hard to recover in field applications. A three-dimensional example reveals that a highly stratified reservoir causes uneven displacement and serious CO2 breakthrough. If mobility control measures like water alternating gas are undertaken, the solubility e ects will be more pronounced than this example. 展开更多
关键词 CO_(2)flooding Wong-Sandler mixing rule Equation of state Numerical simulation CO2 solubility
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部