In this work,we utilize a cocrystallization technique to solve the problem of high hygroscopicity of the high-energy oxidant ammonium dinitramide(ADN).For this purpose,a non-hygroscopic oxidant,triaminoguanidine nitra...In this work,we utilize a cocrystallization technique to solve the problem of high hygroscopicity of the high-energy oxidant ammonium dinitramide(ADN).For this purpose,a non-hygroscopic oxidant,triaminoguanidine nitrate(TAGN),is selected as the cocrystallization ligand.The ADN/TAGN system is simulated by using Material Studio 5.5 software,and the DFT of ADN and TAGN molecules are calculated by Gaussian09 software.The most stable molar ratio of the ADN/TAGN cocrystallization is determined to be 1:1,and the hydrogen bonding between the H atom of ADN and the O atom in the TAGN is the driving force for the formation of cocrystals in this system.Moreover,the electrostatic potential interaction pairing energy difference(ΔEpair)<0 kJ·mol^(-1)(-12.71 kJ·mol^(-1))for nADN:nTAGN=1:1 again indicates cocrystallization at this molar ratio.The crystal structure and crystal morphology is predicted.And the hygroscopicity of ADN/TAGN cocrystal at 20℃and 40%relative humidity is calculated to be only 0.45%.The mechanism of hygroscopicity is investigated by examining the roughness of each crystal surface.Overall,the more hygroscopic it is in terms of surface roughness,with the roughest crystal surface(012)having a hygroscopicity of 1.78,which corresponds to a saturated hygroscopicity of 0.61%.The results show that the(001)crystal surface has the smallest band gap(1.06 eV)and the largest sensitivity.Finally,the oxygen equilibrium value for the ADN/TAGN system is calculated to be-8.2%.展开更多
A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silic...A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silica as a carrier.Ethylene glycol dimethacrylate and 2,2-azobisisobutyronitrile were used as acrosslinker and an initiator,respectively.In addition,based on the macrocyclic effect of crown ethers,the 18-crown-6 ligand was introduced as a ligand to fix the template ions better.Scanning electron microscopy,zeta-potential analysis,Fourier transform infrared spectroscopy,thermogravimetric analysis,and X-ray photoelectron spectroscopy were performed to characterize the ion-imprinted polymer.The effects of the preparation and adsorption conditions on the adsorption performance of the rubidium ion-imprinted polymer were investigated.The results indicated that the rubidium ion-imprinted polymer has high selectivity and faster kinetics than other adsorbents,with an equilibrium adsorption capacity of 200.19 mg·g^(-1)at 298 K within 25 min.The sorption isotherm was well described by the Freundlich isotherm model,while the adsorption kinetics fitted the pseudo-second-order kinetic model.Consecutive adsorption-desorption experiments showed that the ion-imprinted polymer had good chemical stability and reusability.展开更多
Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-tur...Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-turbidity shelf(Chukchi Sea).The ISUS-measured nitrate concentrations closely reproduced the results measured by conventional bottle methods in low-turbidity waters.However,for high-turbidity waters of the East China Sea(salinity<30),a correction factor of 1.19 was required to match the standard bottle measurements.The high-resolution ISUS data revealed subtle spatial variability(e.g.,a subsurface nitrate minimum)that may have been missed if based solely on bottle results.Four main structures of the nitracline on the East China Sea are apparent from the ISUS nitrate profile.High-resolution nitrate data are important for studying nitrate budgets and nutrient dynamics on continental shelves.展开更多
Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed t...Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.展开更多
The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological en...The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological environment.In this work,ciprofloxacin(CIP)was selected as one of typical antibiotics and heterogeneous Fenton-like catalysts were prepared for the treatment of ciprofloxacin wastewater.The sodium alginate(SA)gel microspheres catalysts were prepared by polymerization method using double metal ions of Fe^(3+)and Mn^(2+)as cross-linking agents.Preparation conditions such as metal ions concentration,mass fraction of SA,polymerization temperature and dual-metal ions as crosslinking agent were optimized.Moreover,the effects of operating conditions such as initial concentration of CIP,pH value and catalyst dosage on CIP removal were studied.The kinetic equation showed that the effect of the initial concentration of CIP on the degradation rate was in line with second-order kinetics,and the effects of catalyst dosage and pH value on the degradation rate of CIP were in line with first-order kinetics.The SA gel microspheres catalysts prepared by dual-metal ions exhibited a high CIP removal and showed a good reusability after six recycles.The SA gel microspheres catalysts with an easy recovery performance provided an economical and efficient method for the removal of antibiotics in the future.展开更多
Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats...Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats with similar structures makes the large-scale separation and purification of high-purity nervonic acid very difficult.A new combined process of molecular distillation,urea inclusion and solvent crystallization was established to prepare high-purity nervonic acid with the mixed fatty acids obtained after saponification and acidification of Acer truncatum Bunge oil as raw materials.First,according to the difference in the mean free path of fatty acids,molecular distillation was used to separate and remove C16 saturated fatty acid of palmitic acid and four C18-C20 fatty acids of stearic,oleic,linoleic,and linolenic acids.The content of C16-C20 fatty acids decreased from 72.92% to 19.22% after two-stage molecular distillation processes,in which the contents of saturated fatty acid of palmitic acid decreased to about 0.5%.Then,according to the difference in carbon chain length and saturation of fatty acid,the contents of C22-C24 saturated fatty acids of tetracosanoic and docosanoic acids decreased to 0.21% and 0.07% by urea inclusion with urea/free fatty acid preparation by saponification(SPOMFs)ratio as 0.6.In addition,all saturated fatty acids were basically separated.Finally,according to the difference in the solubility of fatty acids in solvents,the C18-C20 unsaturated fatty acids of oleic,linoleic,and linolenic acids and C22 unsaturated fatty acid of erucic acid were removed by solvent crystallization.The content of C18-C20 unsaturated fatty acids decreased to less than 5% with pentanol as the solvent after the first stage solvent crystallization.The content of erucic acid decreased to 3.47% with anhydrous ethanol as the solvent after the second to fifth stage solvent crystallization.The combined process of molecular distillation,urea inclusion and low temperature crystallization innovatively adopted an efficient,simple and easy-toindustrial solvent crystallization method to separate erucic and nervonic acids,obtaining nervonic acid with purity of 96.53% and final yield of 47.99%.展开更多
Spheroids and organoids have attracted significant attention as innovative models for disease modeling and drug screening.By employing diverse types of spheroids or organoids,it is feasible to establish microphysiolog...Spheroids and organoids have attracted significant attention as innovative models for disease modeling and drug screening.By employing diverse types of spheroids or organoids,it is feasible to establish microphysiological systems that enhance the precision of disease modeling and offer more dependable and comprehensive drug screening.High-throughput microphysiological systems that support optional,parallel testing of multiple drugs have promising applications in personalized medical treatment and drug research.However,establishing such a system is highly challenging and requires a multidisciplinary approach.This study introduces a dynamic Microphysiological System Chip Platform(MSCP)with multiple functional microstructures that encompass the mentioned advantages.We developed a high-throughput lung cancer spheroids model and an intestine-liverheart-lung cancer microphysiological system for conducting parallel testing on four anti-lung cancer drugs,demonstrating the feasibility of the MSCP.This microphysiological system combines microscale and macroscale biomimetics to enable a comprehensive assessment of drug efficacy and side effects.Moreover,the microphysiological system enables evaluation of the real pharmacological effect of drug molecules reaching the target lesion after absorption by normal organs through fluid-based physiological communication.The MSCP could serves as a valuable platform for microphysiological system research,making significant contributions to disease modeling,drug development,and personalized medical treatment.展开更多
Since lithium iron phosphate cathode material does not contain high-value metals other than lithium,it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of w...Since lithium iron phosphate cathode material does not contain high-value metals other than lithium,it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials.Here,we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield.Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions.Iron is retained in the leaching residue as iron phosphate,which is easy to recycle.The effects of factors such as acid concentration,acid dosage,amount of oxidant,and reaction temperature on the leaching of lithium and iron are comprehensively explored,and the mechanism of selective leaching is clarified.This process greatly reduces the cost of processing equipment and chemicals.This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.展开更多
A nitrogen-containing ionic liquid was synthesized using an aromatic nitrogen-containing heterocyclic and an amino acid,and applied to the extractive desulfurization process to remove benzothiophene,dibenzothiophene,a...A nitrogen-containing ionic liquid was synthesized using an aromatic nitrogen-containing heterocyclic and an amino acid,and applied to the extractive desulfurization process to remove benzothiophene,dibenzothiophene,and 4,6-dimethyldibenzothiphene from a model fuel oil.Chemical characterizations and simulation using Gaussian 09 software confirmed the rationality of an ionic liquid structure.Classification of non-covalent interactions between the ionic liquid and the three sulfur-containing contaminants was studied by reduced density gradient analysis.The viscosity of the ionic liquid was adjusted by addition of polyethylene glycol.Under extraction conditions of the volume of ionic liquid to oil as 1:1 and temperature as room temperature,the desulfurization selectivity of ionic liquid followed the order of 4,6-dimethyldibenzothiphene(15 min)<benzothiophene(15 min)≈dibenzothiophene(10 min).Addition of p-xylene and cyclohexene to the fuel oil had little effect.The extractant remained stable and effective after multiple regeneration cycles.展开更多
基金supported by the National Natural Science Foundation of China(22125802).
文摘In this work,we utilize a cocrystallization technique to solve the problem of high hygroscopicity of the high-energy oxidant ammonium dinitramide(ADN).For this purpose,a non-hygroscopic oxidant,triaminoguanidine nitrate(TAGN),is selected as the cocrystallization ligand.The ADN/TAGN system is simulated by using Material Studio 5.5 software,and the DFT of ADN and TAGN molecules are calculated by Gaussian09 software.The most stable molar ratio of the ADN/TAGN cocrystallization is determined to be 1:1,and the hydrogen bonding between the H atom of ADN and the O atom in the TAGN is the driving force for the formation of cocrystals in this system.Moreover,the electrostatic potential interaction pairing energy difference(ΔEpair)<0 kJ·mol^(-1)(-12.71 kJ·mol^(-1))for nADN:nTAGN=1:1 again indicates cocrystallization at this molar ratio.The crystal structure and crystal morphology is predicted.And the hygroscopicity of ADN/TAGN cocrystal at 20℃and 40%relative humidity is calculated to be only 0.45%.The mechanism of hygroscopicity is investigated by examining the roughness of each crystal surface.Overall,the more hygroscopic it is in terms of surface roughness,with the roughest crystal surface(012)having a hygroscopicity of 1.78,which corresponds to a saturated hygroscopicity of 0.61%.The results show that the(001)crystal surface has the smallest band gap(1.06 eV)and the largest sensitivity.Finally,the oxygen equilibrium value for the ADN/TAGN system is calculated to be-8.2%.
基金supported by the National Natural Science Foundation of China(22125802 and 22078010)Beijing Natural Science Foundation(2222017)Big Science Project from BUCT(XK180301)。
文摘A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silica as a carrier.Ethylene glycol dimethacrylate and 2,2-azobisisobutyronitrile were used as acrosslinker and an initiator,respectively.In addition,based on the macrocyclic effect of crown ethers,the 18-crown-6 ligand was introduced as a ligand to fix the template ions better.Scanning electron microscopy,zeta-potential analysis,Fourier transform infrared spectroscopy,thermogravimetric analysis,and X-ray photoelectron spectroscopy were performed to characterize the ion-imprinted polymer.The effects of the preparation and adsorption conditions on the adsorption performance of the rubidium ion-imprinted polymer were investigated.The results indicated that the rubidium ion-imprinted polymer has high selectivity and faster kinetics than other adsorbents,with an equilibrium adsorption capacity of 200.19 mg·g^(-1)at 298 K within 25 min.The sorption isotherm was well described by the Freundlich isotherm model,while the adsorption kinetics fitted the pseudo-second-order kinetic model.Consecutive adsorption-desorption experiments showed that the ion-imprinted polymer had good chemical stability and reusability.
基金The National Key Research and Development Program of China under contract No.2019YFE0120900the Natural Science Foundation of Zhejiang Province under contract No.Y19D060024+1 种基金the National Natural Science Foundation of China under contract Nos U1709202 and 41806228the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea(LORCE).
文摘Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-turbidity shelf(Chukchi Sea).The ISUS-measured nitrate concentrations closely reproduced the results measured by conventional bottle methods in low-turbidity waters.However,for high-turbidity waters of the East China Sea(salinity<30),a correction factor of 1.19 was required to match the standard bottle measurements.The high-resolution ISUS data revealed subtle spatial variability(e.g.,a subsurface nitrate minimum)that may have been missed if based solely on bottle results.Four main structures of the nitracline on the East China Sea are apparent from the ISUS nitrate profile.High-resolution nitrate data are important for studying nitrate budgets and nutrient dynamics on continental shelves.
基金supported by the National Natural Science Foundation of China (22125802 and 22108012)Natural Science Foundation of Beijing Municipality (2222017)Fundamental Research Funds for the Central Universities (BUCTRC-202109)。
文摘Latex wastewater is a kind of refractory organic wastewater containing high concentrations of organics and ammonia nitrogen.In this work,the combined process of forward osmosis(FO)and reverse osmosis(RO)was designed to treat the latex wastewater in the whole process,achieving the water recovery rate of 99%and basically no waste discharge after the catalytic oxidation process.The turbidity of the latex wastewater was decreased to below 1 NTU by microfiltration pretreatment,and then using MgCl_2 worked as the draw solution for FO process to treat the latex wastewater.Different operation conditions including adding acid or scale inhibitor as the pretreatment methods were conducted to improve the treatment performance of the combined process.After the treatment of the whole process,the concentration of COD was less than 20 mg·L^(-1),the concentration of NH_3-N was less than 10 mg·L^(-1),and the concentration of TP was less than 0.5 mg·L^(-1)for the treated latex wastewater.The water quality met standards of industrial water reuse after the complete analysis of the treated latex wastewater,meanwhile,useful substances of L-Quebrachitol(L-Q)were successfully extracted from the concentrated solution.Therefore,the combined process of FO and RO could realize the efficient treatment and reuse of latex wastewater,which provided with some important guidance on the industrial application.
基金supported by the National Natural Science Foundation of China(22125802 and 22108012)Natural Science Foundation of Beijing Municipality(2222017)Fundamental Research Funds for the Central Universities(BUCTRC-202109)。
文摘The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological environment.In this work,ciprofloxacin(CIP)was selected as one of typical antibiotics and heterogeneous Fenton-like catalysts were prepared for the treatment of ciprofloxacin wastewater.The sodium alginate(SA)gel microspheres catalysts were prepared by polymerization method using double metal ions of Fe^(3+)and Mn^(2+)as cross-linking agents.Preparation conditions such as metal ions concentration,mass fraction of SA,polymerization temperature and dual-metal ions as crosslinking agent were optimized.Moreover,the effects of operating conditions such as initial concentration of CIP,pH value and catalyst dosage on CIP removal were studied.The kinetic equation showed that the effect of the initial concentration of CIP on the degradation rate was in line with second-order kinetics,and the effects of catalyst dosage and pH value on the degradation rate of CIP were in line with first-order kinetics.The SA gel microspheres catalysts prepared by dual-metal ions exhibited a high CIP removal and showed a good reusability after six recycles.The SA gel microspheres catalysts with an easy recovery performance provided an economical and efficient method for the removal of antibiotics in the future.
基金supported by the National Natural Science Foundation of China(22125802 and 22078010)Beijing Natural Science Foundation(2222017)Big Science Project from BUCT(XK180301).
文摘Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats with similar structures makes the large-scale separation and purification of high-purity nervonic acid very difficult.A new combined process of molecular distillation,urea inclusion and solvent crystallization was established to prepare high-purity nervonic acid with the mixed fatty acids obtained after saponification and acidification of Acer truncatum Bunge oil as raw materials.First,according to the difference in the mean free path of fatty acids,molecular distillation was used to separate and remove C16 saturated fatty acid of palmitic acid and four C18-C20 fatty acids of stearic,oleic,linoleic,and linolenic acids.The content of C16-C20 fatty acids decreased from 72.92% to 19.22% after two-stage molecular distillation processes,in which the contents of saturated fatty acid of palmitic acid decreased to about 0.5%.Then,according to the difference in carbon chain length and saturation of fatty acid,the contents of C22-C24 saturated fatty acids of tetracosanoic and docosanoic acids decreased to 0.21% and 0.07% by urea inclusion with urea/free fatty acid preparation by saponification(SPOMFs)ratio as 0.6.In addition,all saturated fatty acids were basically separated.Finally,according to the difference in the solubility of fatty acids in solvents,the C18-C20 unsaturated fatty acids of oleic,linoleic,and linolenic acids and C22 unsaturated fatty acid of erucic acid were removed by solvent crystallization.The content of C18-C20 unsaturated fatty acids decreased to less than 5% with pentanol as the solvent after the first stage solvent crystallization.The content of erucic acid decreased to 3.47% with anhydrous ethanol as the solvent after the second to fifth stage solvent crystallization.The combined process of molecular distillation,urea inclusion and low temperature crystallization innovatively adopted an efficient,simple and easy-toindustrial solvent crystallization method to separate erucic and nervonic acids,obtaining nervonic acid with purity of 96.53% and final yield of 47.99%.
基金funded by the National Key Research and Development Program of China(No.2021YFF1200803)National Natural Science Foundation of China(No.62120106004,61901412,62271443)and China Postdoctoral Science Foundation Funded Project(2022M712783).
文摘Spheroids and organoids have attracted significant attention as innovative models for disease modeling and drug screening.By employing diverse types of spheroids or organoids,it is feasible to establish microphysiological systems that enhance the precision of disease modeling and offer more dependable and comprehensive drug screening.High-throughput microphysiological systems that support optional,parallel testing of multiple drugs have promising applications in personalized medical treatment and drug research.However,establishing such a system is highly challenging and requires a multidisciplinary approach.This study introduces a dynamic Microphysiological System Chip Platform(MSCP)with multiple functional microstructures that encompass the mentioned advantages.We developed a high-throughput lung cancer spheroids model and an intestine-liverheart-lung cancer microphysiological system for conducting parallel testing on four anti-lung cancer drugs,demonstrating the feasibility of the MSCP.This microphysiological system combines microscale and macroscale biomimetics to enable a comprehensive assessment of drug efficacy and side effects.Moreover,the microphysiological system enables evaluation of the real pharmacological effect of drug molecules reaching the target lesion after absorption by normal organs through fluid-based physiological communication.The MSCP could serves as a valuable platform for microphysiological system research,making significant contributions to disease modeling,drug development,and personalized medical treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.22125802,and 22078010)Beijing Natural Science Foundation(Grant No.2222017)Big Science Project from BUCT(Grant No.XK180301)。
文摘Since lithium iron phosphate cathode material does not contain high-value metals other than lithium,it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials.Here,we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield.Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions.Iron is retained in the leaching residue as iron phosphate,which is easy to recycle.The effects of factors such as acid concentration,acid dosage,amount of oxidant,and reaction temperature on the leaching of lithium and iron are comprehensively explored,and the mechanism of selective leaching is clarified.This process greatly reduces the cost of processing equipment and chemicals.This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.22125802,22078010 and U1862113)the Big Science Project from BUCT(Grant No.XK180301).
文摘A nitrogen-containing ionic liquid was synthesized using an aromatic nitrogen-containing heterocyclic and an amino acid,and applied to the extractive desulfurization process to remove benzothiophene,dibenzothiophene,and 4,6-dimethyldibenzothiphene from a model fuel oil.Chemical characterizations and simulation using Gaussian 09 software confirmed the rationality of an ionic liquid structure.Classification of non-covalent interactions between the ionic liquid and the three sulfur-containing contaminants was studied by reduced density gradient analysis.The viscosity of the ionic liquid was adjusted by addition of polyethylene glycol.Under extraction conditions of the volume of ionic liquid to oil as 1:1 and temperature as room temperature,the desulfurization selectivity of ionic liquid followed the order of 4,6-dimethyldibenzothiphene(15 min)<benzothiophene(15 min)≈dibenzothiophene(10 min).Addition of p-xylene and cyclohexene to the fuel oil had little effect.The extractant remained stable and effective after multiple regeneration cycles.