Blast disease,caused by the hemibiotrophic ascomycete fungus,Magnaporthe oryzae,is a significant threat to sustainable rice production worldwide.Studies have shown that the blast fungus secretes vast arrays of functio...Blast disease,caused by the hemibiotrophic ascomycete fungus,Magnaporthe oryzae,is a significant threat to sustainable rice production worldwide.Studies have shown that the blast fungus secretes vast arrays of functionally diverse proteins into the host cell for a successful disease progression.However,the final destinations of these effector proteins inside the host cell and their role in advancing fungal pathogenesis remain a mystery.Here,we reported that a putative mitochondrial targeting non-classically secreted protein(MoMtp)positively regulates conidiogenesis and appressorium maturation in M.oryzae.Moreover,MoM TP gene deletion mutant strains triggered a hypersensitive response when inoculated on rice leaves displaying that MoMtp is essential for the virulence of M.oryzae.In addition,cell wall and oxidative stress results indicated that MoMtp is likely involved in the maintenance of the structural integrity of the fungus cell.Our study also demonstrates an upregulation in the expression pattern of the MoMTP gene at all stages of infection,indicating its possible regulatory role in host invasion and the infectious development of M.oryzae.Furthermore,Agrobacterium infiltration and sheath inoculation confirmed that MoMtpGFP protein is predominantly localized in the host mitochondria of tobacco leaf and rice cells.Taken together,we conclude that MoMtp protein likely promotes the normal conidiation and pathogenesis of M.oryzae and might have a role in disturbing the proper functioning of the host mitochondria during pathogen invasion.展开更多
This experiment aims to summarize the properties of glazed tiles that heated by the low-carbon catalytic combustion furnace of natural gas. The tiles heated by the catalytic combustion furnace are more fine and glossy...This experiment aims to summarize the properties of glazed tiles that heated by the low-carbon catalytic combustion furnace of natural gas. The tiles heated by the catalytic combustion furnace are more fine and glossy than the conventional ones. This conclusion provides a new way to glazed tile heating industry. Only with a better understanding of catalytic combustion, can the application benefit our environment and industry.展开更多
Oxyfuel combustion with carbon capture and sequestration (CCS) is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development ...Oxyfuel combustion with carbon capture and sequestration (CCS) is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development of this technology during its scaling up from 0.4 MWth to 3 MWth and 35 aWth by the combined efforts of universities and industries in China. A prefeasibility study on a 200 MWe large-scale demonstration has progressed well, and is ready for implementation. The overall research development and demonstration (RD&D) roadmap for oxyfuel combustion in China has become a critical component of the global RD&D roadmap for oxyfuel combustion. An air combustion/oxyfuel combustion compatible design philosophy was developed during the RD&D process. In this paper, we briefly address fundamental research and technology innovation efforts regarding several technical challenges, including combustion stability, heat transfer, system operation, mineral impurities, and corrosion. To further reduce the cost of carbon capture, in addition to the large-scale deployment of oxyfuel technology, increasing interest is anticipated in the novel and next- generation oxyfuel combustion technologies that are briefly introduced here, including a new oxygen-production concept and flameless oxyfuel combustion.展开更多
The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the...The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the filling rules for the metal were analyzed by the elastic-plastic finite element method (FEM). The results show that there is a great difference among closed-die cold forging, extrusion and forging, as far as the metal flowing is concerned. The outer addendum cannot be filled completely in the closed-die cold forging of the bevel gears, and the round angle will be formed. But it does not influence the application of the bevel gears. At the beginning, the rigid area is formed in the cavity of the lower die. And then it will move upwards to supply the metal for the gear filling. For the closed-die cold forging of the bevel gears, the force acting on the upper die and the lower die is significantly different.展开更多
Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-densit...Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-density stacking faults, differentially spaced lamellar intragranular 14H-LPSO phases, and network intergranular 18R-LPSO phases with high-density intragranular stacking faults. Effects of these featured LPSO phases and stacking faults on dynamic recrystallization(DRX) behavior were investigated via hot compression. Promoted DRX behavior via particle stimulated nucleation(PSN) is introduced by coexisting intergranular island 18R and 14H LPSO phases and intragranular wide spacing lamellar 14H-LPSO phases, contributing the highest DRX fraction of 42.6%. Conversely, it is found that DRX behavior with network intergranular 18R-LPSO phases and dense intragranular stacking fault is considerably inhibited with the lowest fraction of 22.8%. That is, the restricted DRX due to dislocations pinning by stacking faults overwhelms the enhanced DRX behavior via PSN of island intergranular 18R and 14H LPSO phases. Specially, compared with dense intragranular lamellar 14H-LPSO phases, high-density stacking faults exert a larger inhibition effect on DRX behavior.展开更多
Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures a...Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures and good mechanical properties. Lubrication is one of the key techniques in hot extrusion, glass lubricants are most suitable for hot extrusion. Lubrication technique in hot extrusion is dealt with in this paper, the lubrication principle of hot tube extrusion is presented. Experiments of glass lubricated backward tube extrusion of titanium alloys and forward tube extrusion of superalloys are also discussed.展开更多
In this paper, the 3D elastic-plastic simulation was carried out by using finite element (FE) code according to the phenomena of flange keeping straight, bending towards headstock and bending towards tailstock in th...In this paper, the 3D elastic-plastic simulation was carried out by using finite element (FE) code according to the phenomena of flange keeping straight, bending towards headstock and bending towards tailstock in the shear spinning experiments for TC4 alloy. The simulation results for the three kinds of deformations of the flange agree well with the experimental results. So it is possible to explain the reason of flange bending by analyzing the strain vectors in the flange for the three kinds of deformation, which shows that it is important to apply the FE simulation technology for predicting the defects and optimizing the spinning process of TC4 alloys.展开更多
This article did a research about exhaust gas constituent inside the catalytic combustion furnace with Pd-based honeycomb monoliths of lean natural gas-air mixtures and discussed the feature of the exhaust gas. In add...This article did a research about exhaust gas constituent inside the catalytic combustion furnace with Pd-based honeycomb monoliths of lean natural gas-air mixtures and discussed the feature of the exhaust gas. In addition, the near-zero pollutant emissions of catalytic combustion burner was proved by a test report provided by NIM. From a low-carbon prospective, the application prospect of catalytic combustion furnace was展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An...A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An LVOP/LaPO_(4)/CePO_(4)composite cathode material was successfully synthesized and results show that La and Ce co-modification noticeably improves the electrochemical performance by enhancing the high voltage capacity upon cycling,which indicates contributions from the good ionic conductors LaPO_(4)and CePO_(4).The simultaneous La and Ce modification improves the high voltage performance significantly with an increase of 50%in high voltage capacity after 20 cycles compared to pure LVOP.It also shows stabilized cycling perfo rmance with 91%capacity rete ntion after 50 cycles at 0.1 C rate,along with high-rate capability with a capacity of 83.1 mAh/g compared to the pristine sample showing the capacity of 51.6 mAh/g at a high rate of 5C.This can be attributed to the good conductivity of LaPO_(4)and CePO_(4).In addition,the LVOP/LaPO_(4)/CePO_(4)composite and the pristine LVOP give a charge transfer resistance of-105 and-212Ω,respectively,showing much lower impedance due to a combination of La and Ce addition.展开更多
This paper briefly introduces the conception and research history of the Great Oxidation Event(GOE) in the early Paleoproterozoic and summarizes the primary geological and geochemical records of this event. On the bas...This paper briefly introduces the conception and research history of the Great Oxidation Event(GOE) in the early Paleoproterozoic and summarizes the primary geological and geochemical records of this event. On the basis of these, we overview the significant progress in three fields of the GOE: the timing and process of its startup, its mechanisms, and its climatic-ecological effects. The records of mass-independent fractionation of sulfur isotopes suggest that the startup of the GOE might be multi-episodic, which is obviously inconsistent with the single-episodic opinion obtained from atmospheric model simulations. The fundamental mechanism of the GOE was the source of the atmospheric Oexceeding the sink, but it remains uncertain whether it was due to the increase in the source or the decrease in the sink. The GOE substantially affected the climate,biological evolution, and biogeochemical cycles, but the specific processes remain elusive. In consideration of the current progress, we propose four aspects for future explorations, including the construction of geological and geochemical proxies for extremely low atmospheric oxygen content(pO), how the GOE changed the evolutions of Earth’s habitability and the processes in deep Earth, and constraining the mechanism of the GOE by coupling geological events with different time scales.展开更多
Lithium batteries(LIBs) with low capacity graphite anode(~372 mAh g-1) cannot meet the ever-growing demand for new energy electric vehicles and renewable energy storage.It is essential to replace graphite anode with h...Lithium batteries(LIBs) with low capacity graphite anode(~372 mAh g-1) cannot meet the ever-growing demand for new energy electric vehicles and renewable energy storage.It is essential to replace graphite anode with higher capacity anode materials for high-energy density LIBs.Silicon(Si) is well known to be a possible alternative for graphite anode due to its highest capacity(~4200 mAh g-1).Unfortunately,large volume change during lithiation and delithiation has prevented the Si anode from being commercialized.Metal silicides are a promising type of anode materials which can improve cycling stability via the accommodation of volume change by dispersing Si in the metal inactive/active matrix,while maintain greater capacity than graphite.Here,we present a classification of Si alloying with metals in periodic table of elements,review the available literature on metal silicide anodes to outline the progress in improving and understanding the electrochemical performance of various metal silicides,analyze the challenges that remain in using metal silicides,and offer perspectives regarding their future research and development as anode materials for commercial LIBs application.展开更多
The strongly anisotropic mechanical behaviors commonly observed in Zr-4 sheets typically lead to inferior formability.In this study,the mechanical behavior and texture evolution of a cold-rolled Zr-4 sheet under uniax...The strongly anisotropic mechanical behaviors commonly observed in Zr-4 sheets typically lead to inferior formability.In this study,the mechanical behavior and texture evolution of a cold-rolled Zr-4 sheet under uniaxial tension in various directions were systematically investigated,and the results showed both anisotropic yielding and hardening behavior in the Zr-4 sheet.The microstructure and texture features revealed by electron backscattered diffraction(EBSD)method indicate that this anisotropic mechanical behavior is closely related to the initial texture and its evolution during plastic deformation.In conjunction with experimental observations,a visco-plastic self-consistent(VPSC)model was employed to quantitatively analyze the relationship between the mechanical anisotropy and the texture features and activation of deformation modes.It was found that the yield anisotropy is affected by the distinct activity of prismaticslip,while the different activities of basalslip and extension twinning(ETW)result in anisotropic hardening.The distinct activation of deformation modes is mainly caused by differences in the evolution of the Schmid factor(SF)and critical resolved shear stress(CRSS)with increasing strain.Additionally,the results prove that the limited twinning activation with a fraction of less than 3%plays a non-negligible role in the hardening behavior during tension along the transverse direction.The latent hardening effect caused by the interaction between prismatic slip and tensile twinning is considered to successfully capture the anisotropic hardening behavior of the Zr-4 sheet.The implementation and insights from the predictions are presented and discussed in this work.展开更多
As a low-value solid waste fuel,asphalt rock is prone to slagging even under fluidized bed condition.The purpose of this study is to improve the slagging characteristics of asphalt rock by adding the mineral additives...As a low-value solid waste fuel,asphalt rock is prone to slagging even under fluidized bed condition.The purpose of this study is to improve the slagging characteristics of asphalt rock by adding the mineral additives CaCO_(3),MgO,and Kaolin.The results showed that the K,Al,Ca salts in asphalt rock ash will evolve at different temperatures and exist mainly as K_(2)SO_(4),KAlSiO_(4),Al_(2)O_(3)·SiO_(2),Al_(2)O_(3),CaSO_(4),and CaSiO_(3).The CaSO_(4) formed from sulfur oxides and calcium-containing compounds is the main factor in asphalt rock slagging and can be facilitated by CaSiO_(3) with a small amount of CaCO_(3).The MgO can form MgCa(SiO_(3))_(2) with a high melting point and helps raise the ash fusion temperatures.In addition,the Kaolin will promote the formation of low-temperature eutectics,resulting in a slight decrease in ash fusion temperatures.Through optimization,it was found that with the addition of 9.0%MgO+9.0%Kaolin+2.0%CaCO_(3)(in weight),the slagging ratio and pressure difference of asphalt rock under fluidized bed conditions decreased from 6.5% to 4.2% and from 6.0 Pa to 4.0 Pa,respectively.By combining simulation and experimental methods,it has been shown that appropriate mineral additives of CaCO_(3),MgO,and Kaolin can effectively improve the slagging characteristics of asphalt rock.展开更多
基金funded by the National Natural Science Foundation of China(32172364 to Shihong Zhang and 32272513 to Zonghua Wang)Fujian Agriculture and Forestry University scholarship,China for Wajjiha Batool。
文摘Blast disease,caused by the hemibiotrophic ascomycete fungus,Magnaporthe oryzae,is a significant threat to sustainable rice production worldwide.Studies have shown that the blast fungus secretes vast arrays of functionally diverse proteins into the host cell for a successful disease progression.However,the final destinations of these effector proteins inside the host cell and their role in advancing fungal pathogenesis remain a mystery.Here,we reported that a putative mitochondrial targeting non-classically secreted protein(MoMtp)positively regulates conidiogenesis and appressorium maturation in M.oryzae.Moreover,MoM TP gene deletion mutant strains triggered a hypersensitive response when inoculated on rice leaves displaying that MoMtp is essential for the virulence of M.oryzae.In addition,cell wall and oxidative stress results indicated that MoMtp is likely involved in the maintenance of the structural integrity of the fungus cell.Our study also demonstrates an upregulation in the expression pattern of the MoMTP gene at all stages of infection,indicating its possible regulatory role in host invasion and the infectious development of M.oryzae.Furthermore,Agrobacterium infiltration and sheath inoculation confirmed that MoMtpGFP protein is predominantly localized in the host mitochondria of tobacco leaf and rice cells.Taken together,we conclude that MoMtp protein likely promotes the normal conidiation and pathogenesis of M.oryzae and might have a role in disturbing the proper functioning of the host mitochondria during pathogen invasion.
文摘This experiment aims to summarize the properties of glazed tiles that heated by the low-carbon catalytic combustion furnace of natural gas. The tiles heated by the catalytic combustion furnace are more fine and glossy than the conventional ones. This conclusion provides a new way to glazed tile heating industry. Only with a better understanding of catalytic combustion, can the application benefit our environment and industry.
基金supported by the National Key Basic Research and Development Program (2011CB707301)the National Key Technology R&D Program (2011BAC05B00)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20130142130009)the Fund of State Key Laboratory of Coal Combustion
文摘Oxyfuel combustion with carbon capture and sequestration (CCS) is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development of this technology during its scaling up from 0.4 MWth to 3 MWth and 35 aWth by the combined efforts of universities and industries in China. A prefeasibility study on a 200 MWe large-scale demonstration has progressed well, and is ready for implementation. The overall research development and demonstration (RD&D) roadmap for oxyfuel combustion in China has become a critical component of the global RD&D roadmap for oxyfuel combustion. An air combustion/oxyfuel combustion compatible design philosophy was developed during the RD&D process. In this paper, we briefly address fundamental research and technology innovation efforts regarding several technical challenges, including combustion stability, heat transfer, system operation, mineral impurities, and corrosion. To further reduce the cost of carbon capture, in addition to the large-scale deployment of oxyfuel technology, increasing interest is anticipated in the novel and next- generation oxyfuel combustion technologies that are briefly introduced here, including a new oxygen-production concept and flameless oxyfuel combustion.
文摘The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the filling rules for the metal were analyzed by the elastic-plastic finite element method (FEM). The results show that there is a great difference among closed-die cold forging, extrusion and forging, as far as the metal flowing is concerned. The outer addendum cannot be filled completely in the closed-die cold forging of the bevel gears, and the round angle will be formed. But it does not influence the application of the bevel gears. At the beginning, the rigid area is formed in the cavity of the lower die. And then it will move upwards to supply the metal for the gear filling. For the closed-die cold forging of the bevel gears, the force acting on the upper die and the lower die is significantly different.
基金supported by the National Key Research and Development Program of China (No.2021YFB3701100)the National Key Research and Development Program of China (Grant No.2018YFE0115800)the National Natural Science Foundation of China (Grant No.52105412)。
文摘Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-density stacking faults, differentially spaced lamellar intragranular 14H-LPSO phases, and network intergranular 18R-LPSO phases with high-density intragranular stacking faults. Effects of these featured LPSO phases and stacking faults on dynamic recrystallization(DRX) behavior were investigated via hot compression. Promoted DRX behavior via particle stimulated nucleation(PSN) is introduced by coexisting intergranular island 18R and 14H LPSO phases and intragranular wide spacing lamellar 14H-LPSO phases, contributing the highest DRX fraction of 42.6%. Conversely, it is found that DRX behavior with network intergranular 18R-LPSO phases and dense intragranular stacking fault is considerably inhibited with the lowest fraction of 22.8%. That is, the restricted DRX due to dislocations pinning by stacking faults overwhelms the enhanced DRX behavior via PSN of island intergranular 18R and 14H LPSO phases. Specially, compared with dense intragranular lamellar 14H-LPSO phases, high-density stacking faults exert a larger inhibition effect on DRX behavior.
文摘Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures and good mechanical properties. Lubrication is one of the key techniques in hot extrusion, glass lubricants are most suitable for hot extrusion. Lubrication technique in hot extrusion is dealt with in this paper, the lubrication principle of hot tube extrusion is presented. Experiments of glass lubricated backward tube extrusion of titanium alloys and forward tube extrusion of superalloys are also discussed.
文摘In this paper, the 3D elastic-plastic simulation was carried out by using finite element (FE) code according to the phenomena of flange keeping straight, bending towards headstock and bending towards tailstock in the shear spinning experiments for TC4 alloy. The simulation results for the three kinds of deformations of the flange agree well with the experimental results. So it is possible to explain the reason of flange bending by analyzing the strain vectors in the flange for the three kinds of deformation, which shows that it is important to apply the FE simulation technology for predicting the defects and optimizing the spinning process of TC4 alloys.
文摘This article did a research about exhaust gas constituent inside the catalytic combustion furnace with Pd-based honeycomb monoliths of lean natural gas-air mixtures and discussed the feature of the exhaust gas. In addition, the near-zero pollutant emissions of catalytic combustion burner was proved by a test report provided by NIM. From a low-carbon prospective, the application prospect of catalytic combustion furnace was
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
基金the Anhui Natural Science Foundation(1908085ME151,KJ2020A0263)China Po stdoctoral Science Foundation(2020M673404)+2 种基金Anhui Province High-end Talent Grant(DT18100044)the National Level Foreign Expert Introduction Plan(G20190219004)the National Natural Science Foundation of China(52207246)。
文摘A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An LVOP/LaPO_(4)/CePO_(4)composite cathode material was successfully synthesized and results show that La and Ce co-modification noticeably improves the electrochemical performance by enhancing the high voltage capacity upon cycling,which indicates contributions from the good ionic conductors LaPO_(4)and CePO_(4).The simultaneous La and Ce modification improves the high voltage performance significantly with an increase of 50%in high voltage capacity after 20 cycles compared to pure LVOP.It also shows stabilized cycling perfo rmance with 91%capacity rete ntion after 50 cycles at 0.1 C rate,along with high-rate capability with a capacity of 83.1 mAh/g compared to the pristine sample showing the capacity of 51.6 mAh/g at a high rate of 5C.This can be attributed to the good conductivity of LaPO_(4)and CePO_(4).In addition,the LVOP/LaPO_(4)/CePO_(4)composite and the pristine LVOP give a charge transfer resistance of-105 and-212Ω,respectively,showing much lower impedance due to a combination of La and Ce addition.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41821001, 42172216, 41873027)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB26000000)the 111 Project of China (Grant No. BP0820004)。
文摘This paper briefly introduces the conception and research history of the Great Oxidation Event(GOE) in the early Paleoproterozoic and summarizes the primary geological and geochemical records of this event. On the basis of these, we overview the significant progress in three fields of the GOE: the timing and process of its startup, its mechanisms, and its climatic-ecological effects. The records of mass-independent fractionation of sulfur isotopes suggest that the startup of the GOE might be multi-episodic, which is obviously inconsistent with the single-episodic opinion obtained from atmospheric model simulations. The fundamental mechanism of the GOE was the source of the atmospheric Oexceeding the sink, but it remains uncertain whether it was due to the increase in the source or the decrease in the sink. The GOE substantially affected the climate,biological evolution, and biogeochemical cycles, but the specific processes remain elusive. In consideration of the current progress, we propose four aspects for future explorations, including the construction of geological and geochemical proxies for extremely low atmospheric oxygen content(pO), how the GOE changed the evolutions of Earth’s habitability and the processes in deep Earth, and constraining the mechanism of the GOE by coupling geological events with different time scales.
基金financially supported by the School-Enterprise cooperation Project(RD18200058)the Anhui Natural Science Foundation(No.1908085ME151)+2 种基金the Anhui province high-end talent Grant(DT18100044)the Key Laboratory of Marine Materials and Related Technologies,CAS(2019K07)the National Foreign Expert Introduction Plan Project(G20190219004)。
文摘Lithium batteries(LIBs) with low capacity graphite anode(~372 mAh g-1) cannot meet the ever-growing demand for new energy electric vehicles and renewable energy storage.It is essential to replace graphite anode with higher capacity anode materials for high-energy density LIBs.Silicon(Si) is well known to be a possible alternative for graphite anode due to its highest capacity(~4200 mAh g-1).Unfortunately,large volume change during lithiation and delithiation has prevented the Si anode from being commercialized.Metal silicides are a promising type of anode materials which can improve cycling stability via the accommodation of volume change by dispersing Si in the metal inactive/active matrix,while maintain greater capacity than graphite.Here,we present a classification of Si alloying with metals in periodic table of elements,review the available literature on metal silicide anodes to outline the progress in improving and understanding the electrochemical performance of various metal silicides,analyze the challenges that remain in using metal silicides,and offer perspectives regarding their future research and development as anode materials for commercial LIBs application.
基金financially supported by the National Major Science and Technology Projects of China(No.2019ZX06002001)the National Natural Science Foundation of China(No.52105413)the supports from Institute of Metal Research,Chinese Academy of Sciences(No.E055A501)。
文摘The strongly anisotropic mechanical behaviors commonly observed in Zr-4 sheets typically lead to inferior formability.In this study,the mechanical behavior and texture evolution of a cold-rolled Zr-4 sheet under uniaxial tension in various directions were systematically investigated,and the results showed both anisotropic yielding and hardening behavior in the Zr-4 sheet.The microstructure and texture features revealed by electron backscattered diffraction(EBSD)method indicate that this anisotropic mechanical behavior is closely related to the initial texture and its evolution during plastic deformation.In conjunction with experimental observations,a visco-plastic self-consistent(VPSC)model was employed to quantitatively analyze the relationship between the mechanical anisotropy and the texture features and activation of deformation modes.It was found that the yield anisotropy is affected by the distinct activity of prismaticslip,while the different activities of basalslip and extension twinning(ETW)result in anisotropic hardening.The distinct activation of deformation modes is mainly caused by differences in the evolution of the Schmid factor(SF)and critical resolved shear stress(CRSS)with increasing strain.Additionally,the results prove that the limited twinning activation with a fraction of less than 3%plays a non-negligible role in the hardening behavior during tension along the transverse direction.The latent hardening effect caused by the interaction between prismatic slip and tensile twinning is considered to successfully capture the anisotropic hardening behavior of the Zr-4 sheet.The implementation and insights from the predictions are presented and discussed in this work.
基金the Natural Science Foundation of China(Nos.52176187,51976075)the National Natural Science Funds for Distinguished Young Scholar(No.52125601).
文摘As a low-value solid waste fuel,asphalt rock is prone to slagging even under fluidized bed condition.The purpose of this study is to improve the slagging characteristics of asphalt rock by adding the mineral additives CaCO_(3),MgO,and Kaolin.The results showed that the K,Al,Ca salts in asphalt rock ash will evolve at different temperatures and exist mainly as K_(2)SO_(4),KAlSiO_(4),Al_(2)O_(3)·SiO_(2),Al_(2)O_(3),CaSO_(4),and CaSiO_(3).The CaSO_(4) formed from sulfur oxides and calcium-containing compounds is the main factor in asphalt rock slagging and can be facilitated by CaSiO_(3) with a small amount of CaCO_(3).The MgO can form MgCa(SiO_(3))_(2) with a high melting point and helps raise the ash fusion temperatures.In addition,the Kaolin will promote the formation of low-temperature eutectics,resulting in a slight decrease in ash fusion temperatures.Through optimization,it was found that with the addition of 9.0%MgO+9.0%Kaolin+2.0%CaCO_(3)(in weight),the slagging ratio and pressure difference of asphalt rock under fluidized bed conditions decreased from 6.5% to 4.2% and from 6.0 Pa to 4.0 Pa,respectively.By combining simulation and experimental methods,it has been shown that appropriate mineral additives of CaCO_(3),MgO,and Kaolin can effectively improve the slagging characteristics of asphalt rock.