A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well...A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.展开更多
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum...The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.展开更多
Research data infrastructures form the cornerstone in both cyber and physical spaces,driving the progression of the data-intensive scientific research paradigm.This opinion paper presents an overview of global researc...Research data infrastructures form the cornerstone in both cyber and physical spaces,driving the progression of the data-intensive scientific research paradigm.This opinion paper presents an overview of global research data infrastructure,drawing insights from national roadmaps and strategic documents related to research data infrastructure.It emphasizes the pivotal role of research data infrastructures by delineating four new missions aimed at positioning them at the core of the current scientific research and communication ecosystem.The four new missions of research data infrastructures are:(1)as a pioneer,to transcend the disciplinary border and address complex,cutting-edge scientific and social challenges with problem-and data-oriented insights;(2)as an architect,to establish a digital,intelligent,flexible research and knowledge services environment;(3)as a platform,to foster the high-end academic communication;(4)as a coordinator,to balance scientific openness with ethics needs.展开更多
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re...In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.展开更多
In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of...In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of problem,a new embedded rehabilitation system based on brain computer interface(BCI)is proposed in this paper.The system is based on motor imagery(MI)therapy,in which electroencephalogram(EEG)is evoked by grasping motor imageries of left and right hands,then collected by a wearable device.The EEG is transmitted to a Raspberry Pie processing unit through Bluetooth and decoded as the instructions to control the equipment extension.Users experience the limb movement through the visual feedback so as to achieve active rehabilitation.A pilot study shows that the user can control the movement of the rehabilitation equipment through his mind,and the equipment is convenient to carry.The study provides a new way to stroke rehabilitation.展开更多
The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless a...The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.展开更多
With the increase in the number of stroke patients,there is a growing demand for rehabilitation training.Robot-assisted training is expected to play a crucial role in meeting this demand.To ensure the safety and comfo...With the increase in the number of stroke patients,there is a growing demand for rehabilitation training.Robot-assisted training is expected to play a crucial role in meeting this demand.To ensure the safety and comfort of patients during rehabilitation training,it is important to have a patient-cooperative compliant control system for rehabilitation robots.In order to enhance the motion compliance of patients during rehabilitation training,a hierarchical adaptive patient-cooperative compliant control strategy that includes patient-passive exercise and patient-cooperative exercise is proposed.A low-level adaptive backstepping position controller is selected to ensure accurate tracking of the desired trajectory.At the high-level,an adaptive admittance controller is employed to plan the desired trajectory based on the interaction force between the patient and the robot.The results of the patient-robot cooperation experiment on a rehabilitation robot show a significant improvement in tracking trajectory,with a decrease of 76.45%in the dimensionless squared jerk(DSJ)and a decrease of 15.38%in the normalized root mean square deviation(NRMSD)when using the adaptive admittance controller.The proposed adaptive patient-cooperative control strategy effectively enhances the compliance of robot movements,thereby ensuring the safety and comfort of patients during rehabilitation training.展开更多
Background:Despite significant strides in lung cancer immunotherapy,the response rates for Kirsten rat sarcoma viral oncogene homolog(KRAS)-driven lung adenocarcinoma(LUAD)patients remain limited.Fibrinogen-like prote...Background:Despite significant strides in lung cancer immunotherapy,the response rates for Kirsten rat sarcoma viral oncogene homolog(KRAS)-driven lung adenocarcinoma(LUAD)patients remain limited.Fibrinogen-like protein 1(FGL1)is a newly identified immune checkpoint target,and the study of related resistance mechanisms is crucial for improving the treatment outcomes of LUAD patients.This study aimed to elucidate the potential mechanism by which FGL1 regulates the tumor microenvironment in KRAS-mutated cancer.Methods:The expression levels of FGL1 and SET1 histone methyltransferase(SET1A)in lung cancer were assessed using public databases and clinical sam-ples.Lentiviruses were constructed for transduction to overexpress or silence FGL1 in lung cancer cells and mouse models.The effects of FGL1 and Yes-associated protein(Yap)on the immunoreactivity of cytotoxic T cells in tumor tissues were evaluated using immunofluorescence staining and flow cytometry.Chromatin immunoprecipitation and dual luciferase reporter assays were used to study the SET1A-directed transcriptional program.Results:Upregulation of FGL1 expression in KRAS-mutated cancer was inversely correlated with the infiltration of CD8^(+)T cells.Mechanistically,KRAS activated extracellular signal-regulated kinase 1/2(ERK1/2),which subsequently phosphorylated SET1A and increased its stability and nuclear localization.SET1A-mediated methylation of Yap led to Yap sequestration in the nucleus,thereby promoting Yap-induced transcription of FGL1 and immune evasion in KRAS-driven LUAD.Notably,dual blockade of programmed cell death-1(PD-1)and FGL1 further increased the therapeutic efficacy of anti-PD-1 immunotherapy in LUAD patients.Conclusion:FGL1 could be used as a diagnostic biomarker of KRAS-mutated lung cancer,and targeting the Yap-FGL1 axis could increase the efficacy of anti-PD-1 immunotherapy.展开更多
基金Supported by Shanghai Municipal Science and Technology Program (Grant No.21511101701)National Key Research and Development Program of China (Grant No.2021YFC0122704)。
文摘A dual-arm nursing robot can gently lift patients and transfer them between a bed and a wheelchair.With its lightweight design,high load-bearing capacity,and smooth surface,the coupled-drive joint is particularly well suited for these robots.However,the coupled nature of the joint disrupts the direct linear relationship between the input and output torques,posing challenges for dynamic modeling and practical applications.This study investigated the transmission mechanism of this joint and employed the Lagrangian method to construct a dynamic model of its internal dynamics.Building on this foundation,the Newton-Euler method was used to develop a dynamic model for the entire robotic arm.A continuously differentiable friction model was incorporated to reduce the vibrations caused by speed transitions to zero.An experimental method was designed to compensate for gravity,inertia,and modeling errors to identify the parameters of the friction model.This method establishes a mapping relationship between the friction force and motor current.In addition,a Fourier series-based excitation trajectory was developed to facilitate the identification of the dynamic model parameters of the robotic arm.Trajectory tracking experiments were conducted during the experimental validation phase,demonstrating the high accuracy of the dynamic model and the parameter identification method for the robotic arm.This study presents a dynamic modeling and parameter identification method for coupled-drive joint robotic arms,thereby establishing a foundation for motion control in humanoid nursing robots.
基金Supported by National Natural Science Foundation of China(Grant No.52075145)S&T Program of Hebei Province of China(Grant Nos.20281805Z,E2020103001)Central Government Guides Basic Research Projects of Local Science and Technology Development Funds of China(Grant No.206Z1801G).
文摘The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.
基金the National Social Science Fund of China(Grant No.22CTQ031)Special Project on Library Capacity Building of the Chinese Academy of Sciences(Grant No.E2290431).
文摘Research data infrastructures form the cornerstone in both cyber and physical spaces,driving the progression of the data-intensive scientific research paradigm.This opinion paper presents an overview of global research data infrastructure,drawing insights from national roadmaps and strategic documents related to research data infrastructure.It emphasizes the pivotal role of research data infrastructures by delineating four new missions aimed at positioning them at the core of the current scientific research and communication ecosystem.The four new missions of research data infrastructures are:(1)as a pioneer,to transcend the disciplinary border and address complex,cutting-edge scientific and social challenges with problem-and data-oriented insights;(2)as an architect,to establish a digital,intelligent,flexible research and knowledge services environment;(3)as a platform,to foster the high-end academic communication;(4)as a coordinator,to balance scientific openness with ethics needs.
基金This research was funded by the Basic Research Funds for Universities in Inner Mongolia Autonomous Region(No.JY20220272)the Scientific Research Program of Higher Education in InnerMongolia Autonomous Region(No.NJZZ23080)+3 种基金the Natural Science Foundation of InnerMongolia(No.2023LHMS05054)the NationalNatural Science Foundation of China(No.52176212)We are also very grateful to the Program for Innovative Research Team in Universities of InnerMongolia Autonomous Region(No.NMGIRT2213)The Central Guidance for Local Scientific and Technological Development Funding Projects(No.2022ZY0113).
文摘In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.
基金Supported by the National Natural Science Foundation of China(61671193)Science and Technology Program of Zhejiang Province(2018C04012,2017C33049)Science and Technology Platform Construction Project of Fujian Science and Technology Department(2015Y2001)
文摘In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of problem,a new embedded rehabilitation system based on brain computer interface(BCI)is proposed in this paper.The system is based on motor imagery(MI)therapy,in which electroencephalogram(EEG)is evoked by grasping motor imageries of left and right hands,then collected by a wearable device.The EEG is transmitted to a Raspberry Pie processing unit through Bluetooth and decoded as the instructions to control the equipment extension.Users experience the limb movement through the visual feedback so as to achieve active rehabilitation.A pilot study shows that the user can control the movement of the rehabilitation equipment through his mind,and the equipment is convenient to carry.The study provides a new way to stroke rehabilitation.
基金Supported by National Natural Science Foundation of China(Grant Nos.52065053,51875458)Natural Science Foundation of Inner Mongolia(Grant No.2020BS05003)Inner Mongolia Science and Technology Project(Grant No.2020GG0288).
文摘The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.
基金approved by the Biomedical Ethics Committee of Hebei University of Technology(NO.HEBUThMEC2022005).
文摘With the increase in the number of stroke patients,there is a growing demand for rehabilitation training.Robot-assisted training is expected to play a crucial role in meeting this demand.To ensure the safety and comfort of patients during rehabilitation training,it is important to have a patient-cooperative compliant control system for rehabilitation robots.In order to enhance the motion compliance of patients during rehabilitation training,a hierarchical adaptive patient-cooperative compliant control strategy that includes patient-passive exercise and patient-cooperative exercise is proposed.A low-level adaptive backstepping position controller is selected to ensure accurate tracking of the desired trajectory.At the high-level,an adaptive admittance controller is employed to plan the desired trajectory based on the interaction force between the patient and the robot.The results of the patient-robot cooperation experiment on a rehabilitation robot show a significant improvement in tracking trajectory,with a decrease of 76.45%in the dimensionless squared jerk(DSJ)and a decrease of 15.38%in the normalized root mean square deviation(NRMSD)when using the adaptive admittance controller.The proposed adaptive patient-cooperative control strategy effectively enhances the compliance of robot movements,thereby ensuring the safety and comfort of patients during rehabilitation training.
基金supported by National Natural Science Foundation of China Youth Project 82002450(to H.Q.)The Research Program for Higher Education Institutions in Anhui Province 2022AH030081(to S.Z.)+1 种基金Basic and Clinical Collaboration Enhancement Program of Anhui Medical University 2020xkjT023(to H.Q.)The Research Program for Higher Education Institutions in Anhui Province 2023AH050656(to H.Q.).
文摘Background:Despite significant strides in lung cancer immunotherapy,the response rates for Kirsten rat sarcoma viral oncogene homolog(KRAS)-driven lung adenocarcinoma(LUAD)patients remain limited.Fibrinogen-like protein 1(FGL1)is a newly identified immune checkpoint target,and the study of related resistance mechanisms is crucial for improving the treatment outcomes of LUAD patients.This study aimed to elucidate the potential mechanism by which FGL1 regulates the tumor microenvironment in KRAS-mutated cancer.Methods:The expression levels of FGL1 and SET1 histone methyltransferase(SET1A)in lung cancer were assessed using public databases and clinical sam-ples.Lentiviruses were constructed for transduction to overexpress or silence FGL1 in lung cancer cells and mouse models.The effects of FGL1 and Yes-associated protein(Yap)on the immunoreactivity of cytotoxic T cells in tumor tissues were evaluated using immunofluorescence staining and flow cytometry.Chromatin immunoprecipitation and dual luciferase reporter assays were used to study the SET1A-directed transcriptional program.Results:Upregulation of FGL1 expression in KRAS-mutated cancer was inversely correlated with the infiltration of CD8^(+)T cells.Mechanistically,KRAS activated extracellular signal-regulated kinase 1/2(ERK1/2),which subsequently phosphorylated SET1A and increased its stability and nuclear localization.SET1A-mediated methylation of Yap led to Yap sequestration in the nucleus,thereby promoting Yap-induced transcription of FGL1 and immune evasion in KRAS-driven LUAD.Notably,dual blockade of programmed cell death-1(PD-1)and FGL1 further increased the therapeutic efficacy of anti-PD-1 immunotherapy in LUAD patients.Conclusion:FGL1 could be used as a diagnostic biomarker of KRAS-mutated lung cancer,and targeting the Yap-FGL1 axis could increase the efficacy of anti-PD-1 immunotherapy.