Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
Salinity gradient energy between the concentrated and diluted electrolyte solutions can be converted to electric energy by using reverse electrodialysis(RED) technology. Electrolyte solution is a vital factor that imp...Salinity gradient energy between the concentrated and diluted electrolyte solutions can be converted to electric energy by using reverse electrodialysis(RED) technology. Electrolyte solution is a vital factor that impacts the energy conversion efficiency. Potassium acetate(KAc) was chosen as solute, and water, ethanol, 2,2,2-trifluoroethanol(TFE), 2-propanol(IPA) and several of their binary mixtures were selected as solvents. Electric conductivity of these solutions were measured under varying conditions. KAc was easily ionized in water and possessed the maximum electric conductivity, following by KAc–H_2O–TFE and KAc–H_2O–ethanol, and then KAc in pure TFE, ethanol, and IPA respectively. For electric convertibility of these solutions working in a RED power generation system, it was found that the KAc–H_2O possessed the maximum power density, and the KAc–ethanol–H_2O possessed the larger open circuit voltage than aqueous KAc solution under the same working condition. Besides, it was observed that both the electric conductivity and electric convertibility were significantly influenced by the concentration and temperature of solution. With the increasing of concentration,electric conductivity of these solutions increased firstly and then reached to the peak, but later it decreased.Solution temperature took a positive impact role to the electric conductivity. Electric conductivity of these solutions can be estimated by using a modified amplitude version of Gaussian peak function.展开更多
This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We...This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We aim to maximize the throughput overall GTs by jointly optimizing the UAVs’trajectory,the GTs’scheduling and power allocation.Unlike most prior studies,we consider the UAVs’turning and climbing angle constraints,the UAVs’three-dimensional(3D)trajectory constraints,minimum UAV-to-UAV(U2U)distance constraint,and the GTs’transmit power requirements.However,the formulated problem is a mixed-integer non-convex problem and is intractable to work it out with conventional optimization methods.To tackle this difficulty,we propose an efficient robust iterative algorithm to decompose the original problem be three sub-problems and acquire the suboptimal solution via utilizing the block coordinate descent(BCD)method,successive convex approximation(SCA)technique,and S-procedure.Extensive simulation results show that our proposed robust iterative algorithm offers a substantial gain in the system performance compared with the benchmark algorithms.展开更多
The knowledge of solubility of a salt in either the pure solvent or blend solvent is of great importance for studying or operating the crystallization,extraction,and distillation processes.The solubility of sodium ace...The knowledge of solubility of a salt in either the pure solvent or blend solvent is of great importance for studying or operating the crystallization,extraction,and distillation processes.The solubility of sodium acetate(NaAc)in four pure solvents(water,ethanol,acetic acid and 2,2,2-trifluoroethanol)and four binary solvents(water–ethanol,water-acetic acid,acetic acid–ethanol,and acetic acid-ethyl acetate)were measured by using the laser dynamic method at temperatures from 288.15 K to 338.15 K at 0.1 MPa.The results showed that the solubility of NaAc was influenced by either the solution temperature or solvent composition.The aqueous sodium acetate solution possessed the maximal solubility under the experimental conditions.The solubility of NaAc in 2,2,2-trifluoroethanol was found to be decreased with the increase of the solution temperature.While,the solubilities of NaAc in other seven solvents increased as the solution temperature was elevated.Besides,five correlation models,including the van’t Hoff model,modified Apelblat model,Yaws model,λh model,and modified Apelblat-Jouyban-Acree model were used to correlate the solubility data of those sodium acetate solutions with acceptable deviation,respectively.Finally,van’t Hoff analysis method was selected to analyze the change law of thermodynamic properties of a salt during the dissolution process.展开更多
Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural phot...Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural photosynthesis,an artificial photosynthesis model reaction of photochemical CO_(2) to CO conversion(CO_(2)+2 H^(+)+2e^(-)→CO+H_(2)O)catalyzed by a homogeneous hexanuclear ring cobalt complex{K_(2)[CoO_(3)PCH_(2)N(CH_(2)CO_(2))_(2)]}_(6)(Co6 complex)is developed.Using the[Ru(bpy)_(3)]^(2+)as a photosensitizer and TEOA as a sacrificial electron donor,an optimal turnover frequency of 503.3 h^(‒1) and an apparent quantum efficiency of 0.81%are obtained.The good photocatalytic CO_(2) reduction performance is attributed to the efficient electron transfer between Co6 complex and[Ru(bpy)_(3)]^(2+),which boosts the photogenerated carriers separation of the photosensitizer.It is confirmed by the j‐V curves,light‐assisted UV‐vis curves,steady‐state photoluminescence spectra and real‐time laser flash photolysis experiments.In addition,the proposed catalytic mechanism for CO_(2) reduction reaction catalyzed by the Co6 complex is explored by the potassium thiocyanate poison experiment,Pourbaix diagram and density functional theory calculations.展开更多
The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,bot...The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.展开更多
BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat b...BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat brain following transient global cerebral ischemia-reperfusion (IR), as well as the effects of hyperbaric oxygen (HBO) treatment. DESIGN, TIME AND SETTING: A randomized and controlled animal study was performed in the Department of Biochemistry and Molecular Biology, Capital Medical University between February and December 2006. MATERIALS: Clean-grade, female, Sprague Dawley rats were provided by the Animal Research Department of Capital Medical University (License number: SYXK11-00-0047). Na^+-K^+-ATPase and Ca^2+-ATPase kits were provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). A hyperbaric oxygen chamber (DWC150-300) was supplied by Shanghai 701 Medical Oxygen Chamber Factory (Shanghai, China). METHODS: Sixty-three rats were randomly divided into nine groups: sham operated group (sham-O) as control, groups of IR, and groups treated with hyperbaric oxygen (HBO) after IR. Animal from the IR and HBO groups were sacrificed after four different survival intervals of 6, 24, 48 and 96 hours, respectively. Each group consisted of seven rats. The rats of HBO groups were placed into the hyperbaric chamber. The HBO chamber was flushed with pure oxygen for 5 minutes, followed by a gradual rise in pressure over 5 minutes and stabilization at 0.2 MPa. Then, pure oxygen was supplied for 45 minutes in stabilized pressure, followed by gradually reduced pressure over 15 minutes. The rats of the 6-h HBO group were placed into the HBO chamber following reperfusion for 3 hours on the first day, which was repeated on three consecutive days, always at the same time. Rats in the sham-O group and IR group remained under normal atmospheric pressure. MAIN OUTCOME MEASURES: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in rat brain homogenate was detected by the ammonium molybdate assay method. RESULTS: All 63 rats were included in the final analysis. Alter 6 hours, Na^+-K^+-ATPase activity was significantly greater in HBO animals, compared with IR animals (P 〈 0.05) and sham-O controls (P〈 0.01). In both, the HBO group and IR group, Na^+-K^+-ATPase activity returned to normal levels after 24 hours (P 〉 0.05). At 48 and 96 hours, Na^+-K^+-ATPase activity was significantly greater in HBO and IR animals, compared with sham-O animals (P 〈 0.05). Ca^2+-ATPase activity was significantly greater in the HBO group after 6 hours, compared with the sham-O group (P 〈 0.01 ), and returned to normal levels at 24 and 96 hours (P 〉 0.05). In the IR group, Ca^2+-ATPase activity was significantly higher after 6 hours than in the sharn-O group (P〈 0.01), and returned to normal levels after 24 hours (P 〉 0.05). CONCLUSION: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in IR groups increased during the acute and the delayed phase following transient global cerebral IR. HBO treatment not only increased Na^+-K^+-ATPase activity at the acute stage, but also induced a faster recovery of Ca^2+-ATPase activity.展开更多
Considering Brinkman⁃Forchheimer extended Darcy flow and local thermal non⁃equilibrium effect,a general model of forced convection with viscous dissipation in power⁃law fluid saturated porous media channel was establi...Considering Brinkman⁃Forchheimer extended Darcy flow and local thermal non⁃equilibrium effect,a general model of forced convection with viscous dissipation in power⁃law fluid saturated porous media channel was established.The dimensionless temperature profiles and Nusselt number were numerically solved using the classical fourth⁃order Runge Kutta method under a constant heat flux boundary condition.The conclusion showed that the fluid⁃solid temperature distributions were significantly affected by dimensionless Bi,k,Da,Br,and F,and the effects of power⁃law indexes on convection heat transfer characteristics were also non⁃negligible.展开更多
OBJECTIVE: TO summarize the relationship between heat shock protein 70 (HSP70) and cerebra ischemia. DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in Eng...OBJECTIVE: TO summarize the relationship between heat shock protein 70 (HSP70) and cerebra ischemia. DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in English from January 1980 to December 2005 by using the keywords of "heat shock protein 70, ischemia". Meanwhile, Chinese relevant articles published from January 2000 to December 2005 were searched in China National Knowledge Infrastructure (CNKI) database and Chinese Journal of Clinical Rehabilitation with the keywords of "heat shock protein 70, cerebral ischemia" in Chinese. STUDY SELECTION : More than 100 related articles were screened, and 29 references mainly about HSP70 and cerebral ischemia were selected, including basic and clinical researches. As to the articles with similar content, those published in the authoritative journals in recent 3 years were preferential. DATA EXTRACTION: A total of 29 articles were collected and classified according to the structure, function and clinical application of HSP70. Among them, 1 article is about the structure of HSP70, 27 about the relationship between HSP70 and cerebral ischemia, and 2 about the clinical application of HSP70. DATA SYNTHESIS: HSP70 is one of the most conservative proteins during biological evolution. Experiments in cerebral ischemia revealed that HSP70 expression was time-dependent, also correlated with the injured site and severity. The cerebral ischemia induced HSP70 gene expression in hippocampus of gerbil had protection to tolerance of fatal ischemic injury for neurons. The increase of HSP70 expression may be one of the endogenous protective mechanisms during cerebral ischemia, and can effectively alleviate cerebral ischemia. Thus HSP70 protein and HSP70 mRNA have been taken as important indexes extensively applied in the basic study of cerebral ischemia by some scholars abroad. CONCLUSION: HSP70 plays a protective role in cerebral ischemia, and a deeper research into the biological function of HSP70 will provide a new way for the therapy of cerebral ischemia.展开更多
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金Supported by the National Natural Science Foundations of China(51606024,51776029)the Fundamental Research Funds for Central Universities(DUT17JC31)the China Scholarship Council(iCET2017 Program)
文摘Salinity gradient energy between the concentrated and diluted electrolyte solutions can be converted to electric energy by using reverse electrodialysis(RED) technology. Electrolyte solution is a vital factor that impacts the energy conversion efficiency. Potassium acetate(KAc) was chosen as solute, and water, ethanol, 2,2,2-trifluoroethanol(TFE), 2-propanol(IPA) and several of their binary mixtures were selected as solvents. Electric conductivity of these solutions were measured under varying conditions. KAc was easily ionized in water and possessed the maximum electric conductivity, following by KAc–H_2O–TFE and KAc–H_2O–ethanol, and then KAc in pure TFE, ethanol, and IPA respectively. For electric convertibility of these solutions working in a RED power generation system, it was found that the KAc–H_2O possessed the maximum power density, and the KAc–ethanol–H_2O possessed the larger open circuit voltage than aqueous KAc solution under the same working condition. Besides, it was observed that both the electric conductivity and electric convertibility were significantly influenced by the concentration and temperature of solution. With the increasing of concentration,electric conductivity of these solutions increased firstly and then reached to the peak, but later it decreased.Solution temperature took a positive impact role to the electric conductivity. Electric conductivity of these solutions can be estimated by using a modified amplitude version of Gaussian peak function.
文摘This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We aim to maximize the throughput overall GTs by jointly optimizing the UAVs’trajectory,the GTs’scheduling and power allocation.Unlike most prior studies,we consider the UAVs’turning and climbing angle constraints,the UAVs’three-dimensional(3D)trajectory constraints,minimum UAV-to-UAV(U2U)distance constraint,and the GTs’transmit power requirements.However,the formulated problem is a mixed-integer non-convex problem and is intractable to work it out with conventional optimization methods.To tackle this difficulty,we propose an efficient robust iterative algorithm to decompose the original problem be three sub-problems and acquire the suboptimal solution via utilizing the block coordinate descent(BCD)method,successive convex approximation(SCA)technique,and S-procedure.Extensive simulation results show that our proposed robust iterative algorithm offers a substantial gain in the system performance compared with the benchmark algorithms.
基金Supported by the National Natural Science Foundation of China(52076026,51606024,51776029)the Project of the Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,China(LOEC-201904)。
文摘The knowledge of solubility of a salt in either the pure solvent or blend solvent is of great importance for studying or operating the crystallization,extraction,and distillation processes.The solubility of sodium acetate(NaAc)in four pure solvents(water,ethanol,acetic acid and 2,2,2-trifluoroethanol)and four binary solvents(water–ethanol,water-acetic acid,acetic acid–ethanol,and acetic acid-ethyl acetate)were measured by using the laser dynamic method at temperatures from 288.15 K to 338.15 K at 0.1 MPa.The results showed that the solubility of NaAc was influenced by either the solution temperature or solvent composition.The aqueous sodium acetate solution possessed the maximal solubility under the experimental conditions.The solubility of NaAc in 2,2,2-trifluoroethanol was found to be decreased with the increase of the solution temperature.While,the solubilities of NaAc in other seven solvents increased as the solution temperature was elevated.Besides,five correlation models,including the van’t Hoff model,modified Apelblat model,Yaws model,λh model,and modified Apelblat-Jouyban-Acree model were used to correlate the solubility data of those sodium acetate solutions with acceptable deviation,respectively.Finally,van’t Hoff analysis method was selected to analyze the change law of thermodynamic properties of a salt during the dissolution process.
文摘Photosynthesis in nature has been deemed as the most significant biochemical reaction,which maintains a relatively stable content of O_(2) and CO_(2) in the atmosphere.Herein,for a deeper comprehension of natural photosynthesis,an artificial photosynthesis model reaction of photochemical CO_(2) to CO conversion(CO_(2)+2 H^(+)+2e^(-)→CO+H_(2)O)catalyzed by a homogeneous hexanuclear ring cobalt complex{K_(2)[CoO_(3)PCH_(2)N(CH_(2)CO_(2))_(2)]}_(6)(Co6 complex)is developed.Using the[Ru(bpy)_(3)]^(2+)as a photosensitizer and TEOA as a sacrificial electron donor,an optimal turnover frequency of 503.3 h^(‒1) and an apparent quantum efficiency of 0.81%are obtained.The good photocatalytic CO_(2) reduction performance is attributed to the efficient electron transfer between Co6 complex and[Ru(bpy)_(3)]^(2+),which boosts the photogenerated carriers separation of the photosensitizer.It is confirmed by the j‐V curves,light‐assisted UV‐vis curves,steady‐state photoluminescence spectra and real‐time laser flash photolysis experiments.In addition,the proposed catalytic mechanism for CO_(2) reduction reaction catalyzed by the Co6 complex is explored by the potassium thiocyanate poison experiment,Pourbaix diagram and density functional theory calculations.
基金The National Key Research and Development Program of China under contract Nos 2016YFF0202705 and2018YFA0605904the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under contract NOAA Cooperative Agreement NA15OAR4320063,contribution No.2019-1044,and PMEL contribution No.5052。
文摘The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.
基金Science and Technology Development Program of Beijing Education Committee, No.KM200510025004
文摘BACKGROUND: Energy depletion, induced by ischemia or hypoxia, is one of the first events in neuronal injury. OBJECTIVE: To investigate the dynamic changes of Na^+-K^+-ATPase and Ca^2+-ATPase activity in the rat brain following transient global cerebral ischemia-reperfusion (IR), as well as the effects of hyperbaric oxygen (HBO) treatment. DESIGN, TIME AND SETTING: A randomized and controlled animal study was performed in the Department of Biochemistry and Molecular Biology, Capital Medical University between February and December 2006. MATERIALS: Clean-grade, female, Sprague Dawley rats were provided by the Animal Research Department of Capital Medical University (License number: SYXK11-00-0047). Na^+-K^+-ATPase and Ca^2+-ATPase kits were provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). A hyperbaric oxygen chamber (DWC150-300) was supplied by Shanghai 701 Medical Oxygen Chamber Factory (Shanghai, China). METHODS: Sixty-three rats were randomly divided into nine groups: sham operated group (sham-O) as control, groups of IR, and groups treated with hyperbaric oxygen (HBO) after IR. Animal from the IR and HBO groups were sacrificed after four different survival intervals of 6, 24, 48 and 96 hours, respectively. Each group consisted of seven rats. The rats of HBO groups were placed into the hyperbaric chamber. The HBO chamber was flushed with pure oxygen for 5 minutes, followed by a gradual rise in pressure over 5 minutes and stabilization at 0.2 MPa. Then, pure oxygen was supplied for 45 minutes in stabilized pressure, followed by gradually reduced pressure over 15 minutes. The rats of the 6-h HBO group were placed into the HBO chamber following reperfusion for 3 hours on the first day, which was repeated on three consecutive days, always at the same time. Rats in the sham-O group and IR group remained under normal atmospheric pressure. MAIN OUTCOME MEASURES: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in rat brain homogenate was detected by the ammonium molybdate assay method. RESULTS: All 63 rats were included in the final analysis. Alter 6 hours, Na^+-K^+-ATPase activity was significantly greater in HBO animals, compared with IR animals (P 〈 0.05) and sham-O controls (P〈 0.01). In both, the HBO group and IR group, Na^+-K^+-ATPase activity returned to normal levels after 24 hours (P 〉 0.05). At 48 and 96 hours, Na^+-K^+-ATPase activity was significantly greater in HBO and IR animals, compared with sham-O animals (P 〈 0.05). Ca^2+-ATPase activity was significantly greater in the HBO group after 6 hours, compared with the sham-O group (P 〈 0.01 ), and returned to normal levels at 24 and 96 hours (P 〉 0.05). In the IR group, Ca^2+-ATPase activity was significantly higher after 6 hours than in the sharn-O group (P〈 0.01), and returned to normal levels after 24 hours (P 〉 0.05). CONCLUSION: The Na^+-K^+-ATPase and Ca^2+-ATPase activity in IR groups increased during the acute and the delayed phase following transient global cerebral IR. HBO treatment not only increased Na^+-K^+-ATPase activity at the acute stage, but also induced a faster recovery of Ca^2+-ATPase activity.
基金Sponsored by the Liaoning Provincial Doctoral Initiation Fund Project(Grant No.2019-BS-030).
文摘Considering Brinkman⁃Forchheimer extended Darcy flow and local thermal non⁃equilibrium effect,a general model of forced convection with viscous dissipation in power⁃law fluid saturated porous media channel was established.The dimensionless temperature profiles and Nusselt number were numerically solved using the classical fourth⁃order Runge Kutta method under a constant heat flux boundary condition.The conclusion showed that the fluid⁃solid temperature distributions were significantly affected by dimensionless Bi,k,Da,Br,and F,and the effects of power⁃law indexes on convection heat transfer characteristics were also non⁃negligible.
基金a grant from Sci-entific and Technological Devel-opmental Program of Beijing E-ducation Committee, No.KM200510025004
文摘OBJECTIVE: TO summarize the relationship between heat shock protein 70 (HSP70) and cerebra ischemia. DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in English from January 1980 to December 2005 by using the keywords of "heat shock protein 70, ischemia". Meanwhile, Chinese relevant articles published from January 2000 to December 2005 were searched in China National Knowledge Infrastructure (CNKI) database and Chinese Journal of Clinical Rehabilitation with the keywords of "heat shock protein 70, cerebral ischemia" in Chinese. STUDY SELECTION : More than 100 related articles were screened, and 29 references mainly about HSP70 and cerebral ischemia were selected, including basic and clinical researches. As to the articles with similar content, those published in the authoritative journals in recent 3 years were preferential. DATA EXTRACTION: A total of 29 articles were collected and classified according to the structure, function and clinical application of HSP70. Among them, 1 article is about the structure of HSP70, 27 about the relationship between HSP70 and cerebral ischemia, and 2 about the clinical application of HSP70. DATA SYNTHESIS: HSP70 is one of the most conservative proteins during biological evolution. Experiments in cerebral ischemia revealed that HSP70 expression was time-dependent, also correlated with the injured site and severity. The cerebral ischemia induced HSP70 gene expression in hippocampus of gerbil had protection to tolerance of fatal ischemic injury for neurons. The increase of HSP70 expression may be one of the endogenous protective mechanisms during cerebral ischemia, and can effectively alleviate cerebral ischemia. Thus HSP70 protein and HSP70 mRNA have been taken as important indexes extensively applied in the basic study of cerebral ischemia by some scholars abroad. CONCLUSION: HSP70 plays a protective role in cerebral ischemia, and a deeper research into the biological function of HSP70 will provide a new way for the therapy of cerebral ischemia.