Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process r...Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process remain unknown.Aromatase,encoded by the cyp19a1 gene,which converts androgens into estrogens in animals,was considered to be the key gene for TSD.In this study,the 5'-flanking region of the cyp19a1 gene in Reeves' turtle(Mauremys reevesii) was cloned,and the promoter region was identified using the luciferase reporter assay.Then the eggs of Reeves' turtle were incubated at different temperatures(26°C: male-biased temperature; 29°C: non-sex-biased temperature and 32°C: female-biased temperature).During the thermosensitive period,the adrenal kidney gonad complexes(AKG) were sampled.DNA methylation analysis of the AKG samples showed that the promoter region of the cyp19a1 gene was significantly de-methylated in the female-biased temperature regime(P<0.01).Quantitative analysis of the cyp19a1 gene and estrogen by q PCR and Elisa assay showed that the expression level of the cyp19a1 gene and estrogen content were both upregulated significantly at the female-biased temperature(P<0.01).These results indicated that the de-methylation response of the cyp19a1 gene to incubation temperature,especially at the female-biased temperature,could lead to temperature-specific expression of aromatase and increased estrogen levels,which may further determine gonadal development in Reeves' turtle.These findings provide insights into the genetic mechanisms underlying TSD.展开更多
The yellow pond turtle Mauremys mutica is widely cultured using both greenhouse-reared and outdoor pond-reared models.Individuals from the two models often show different tolerances to dramatic temperature changes cau...The yellow pond turtle Mauremys mutica is widely cultured using both greenhouse-reared and outdoor pond-reared models.Individuals from the two models often show different tolerances to dramatic temperature changes caused by extreme weather events.However,the mechanism underlying the difference is unclear.In this study,we found that for greenhouse-reared turtles(GRTs),the expression levels of an immune-related gene for transferrin were significantly different(P<0.05)between the control group and the acute cold stress(ACS)group for most time points(3 h,6 h and 48 h),while at two time points(6 h and 12 h)there was a significant difference(P<0.05)between the control group and the acute heat stress(AHS)group.However,for the outdoor pond-reared turtles(OPTs),we found the opposite pattern:the ACS group showed no significant difference(P>0.05)from the control group for all time points(3 h,6 h,12 h,24 h and 48 h),whereas two time points(12 h and 24 h)were significantly different(P<0.05)for the AHS group.Our results indicate that ACS may influence the immunity of GRTs and have no influence on OPTs,whereas AHS may largely affect the immunity of OPTs and have little influence on GRTs.The findings provide insights into the mechanism underlying the different morbidity and mortality rates of turtles from different culture models after extreme weather events.展开更多
基金supported financially by the National Natural Science Foundation of China(Nos.31401053 and 31471966)Guangdong Provincial Natural Science Foundation of China(No.2015A030313903)+1 种基金GDAS Special Project of Science and Technology Development(2017GDASCX-0107)the Funds for Environment Construction and Capacity Building of GDAS’Research Platform(2016GDASPT-0107)
文摘Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process remain unknown.Aromatase,encoded by the cyp19a1 gene,which converts androgens into estrogens in animals,was considered to be the key gene for TSD.In this study,the 5'-flanking region of the cyp19a1 gene in Reeves' turtle(Mauremys reevesii) was cloned,and the promoter region was identified using the luciferase reporter assay.Then the eggs of Reeves' turtle were incubated at different temperatures(26°C: male-biased temperature; 29°C: non-sex-biased temperature and 32°C: female-biased temperature).During the thermosensitive period,the adrenal kidney gonad complexes(AKG) were sampled.DNA methylation analysis of the AKG samples showed that the promoter region of the cyp19a1 gene was significantly de-methylated in the female-biased temperature regime(P&lt;0.01).Quantitative analysis of the cyp19a1 gene and estrogen by q PCR and Elisa assay showed that the expression level of the cyp19a1 gene and estrogen content were both upregulated significantly at the female-biased temperature(P&lt;0.01).These results indicated that the de-methylation response of the cyp19a1 gene to incubation temperature,especially at the female-biased temperature,could lead to temperature-specific expression of aromatase and increased estrogen levels,which may further determine gonadal development in Reeves' turtle.These findings provide insights into the genetic mechanisms underlying TSD.
基金funded by the thousand PhD program of Guangdong Academy of Sciences(No.2018GDASCX-0932,No.2020GDASYL-20200103099)the Training Fund of Guangdong Institute of Applied Biological Resources For PhDs,Masters and Postdoctoral Researchers(No.GIABR-pyjj201603)+2 种基金the GDAS Special Project of Science and Technology Development(No.2018GDASCX-0107)the Scientific and Technological Program of Guangdong Province(No.2017A020219004)the National Natural Science Foundation of China(No.31772486)。
文摘The yellow pond turtle Mauremys mutica is widely cultured using both greenhouse-reared and outdoor pond-reared models.Individuals from the two models often show different tolerances to dramatic temperature changes caused by extreme weather events.However,the mechanism underlying the difference is unclear.In this study,we found that for greenhouse-reared turtles(GRTs),the expression levels of an immune-related gene for transferrin were significantly different(P<0.05)between the control group and the acute cold stress(ACS)group for most time points(3 h,6 h and 48 h),while at two time points(6 h and 12 h)there was a significant difference(P<0.05)between the control group and the acute heat stress(AHS)group.However,for the outdoor pond-reared turtles(OPTs),we found the opposite pattern:the ACS group showed no significant difference(P>0.05)from the control group for all time points(3 h,6 h,12 h,24 h and 48 h),whereas two time points(12 h and 24 h)were significantly different(P<0.05)for the AHS group.Our results indicate that ACS may influence the immunity of GRTs and have no influence on OPTs,whereas AHS may largely affect the immunity of OPTs and have little influence on GRTs.The findings provide insights into the mechanism underlying the different morbidity and mortality rates of turtles from different culture models after extreme weather events.