Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.I...Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions.展开更多
In this article,the legend for Fig.3 f&g was inadvertently mislabeled.The figure below shows the wrong one.The figure should have appeared as shown below.
Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hier...Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.展开更多
Objective: Vasculogenic mimicry(VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors.However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells(C...Objective: Vasculogenic mimicry(VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors.However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells(CSCs) are positively correlated with VM. In this study, triple-negative breast cancer(TNBC) enriched with CSCs was used to investigate the relationship between VM and CSCs.Methods: The expression of several CSC markers was detected by immunohistochemistry in 100 human breast cancer samples.The clinical significance of CSC markers and the relationship between VM, CSCs, breast cancer subtypes, and VM-associated proteins were analyzed. CD133+ and ALDH+ human and mouse TNBC cells were isolated by FACS to examine the ability of VM formation and the spatial relationship between VM and CSCs.Results: CSCs were associated with TNBC subtype and VM in human invasive breast cancer. CSCs in TNBC MDA-MB-231 cells formed more VM channels and expressed more molecules promoting VM than the non-TNBC MCF-7 cells in vitro. MDA-MB-231 cells that encircled VM channels on Matrigel expressed CD133. Moreover, CSCs were located near VM channels in the 3D reconstructed blood supply system in human TNBC grafts. The CD133+ and ALDH+ cells isolated from TA2 mouse breast cancer formed more VM channels in vivo.Conclusions: CSCs line VM channels directly. Additionally, CSCs provide more VM-related molecules to synergize VM formation. The signaling pathways that control CSC differentiation may also be potential treatment targets for TNBC.展开更多
Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the me...Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data.The results show that the stress-strain curve could be divided into four stages in a single cycle.The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate;irreversible strain and dissipated energy density increase exponentially with deviatoric stress,inversely proportional to the confining pressure and loading rate.The internal structure of tectonic coal is divided into three types,all of which are damaged under different deviatoric stress levels,thereby explaining the segmentation phenomenon of stress-strain curve of tectonic coal in the cyclic loading process.Tectonic coal exhibits nonlinear energy storage characteristics,which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation.In addition,the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy.展开更多
Sapindus L.species are widely cultivated for biodiesel,biomedical,and biochemical raw materials in southern China.However,yields fuctuate widely due to the lack of high-yielding,high-quality,stable cultivars.Therefore...Sapindus L.species are widely cultivated for biodiesel,biomedical,and biochemical raw materials in southern China.However,yields fuctuate widely due to the lack of high-yielding,high-quality,stable cultivars.Therefore,the objectives of this study were to evaluate three species and one variety among 149 nationwide Sapindus species and screen for elite accessions which would serve as Sapindus breeding materials.Accessions were evaluated on 19 agro-morphological traits by correlation analysis and principal component analysis.These displayed substantial diversity and a broad range of economic traits.In particular,accessions of Sapindus mukorossi and Sapindus rarak had more variation in economic traits than Sapindus delavayi and Sapindus rarak var.velutinus.Increased saponin accumulation may be achieved at the cost of seed oil production.Thirty elite accessions for oil and saponin production,and for comprehensive utilization were screened and accessions no.80,110,and 112 had significant potential to produce high yields.These elite accessions will facilitate the identification of genetic determinants of valuable traits and the effective utilization of trait variability in Sapindus breeding.展开更多
Tellurene, an emerging two-dimensional chain-like semiconductor, stands out for its high switch ratio, carrier mobility and excellent stability in air. Directly contacting the 2D semiconductor materials with metal ele...Tellurene, an emerging two-dimensional chain-like semiconductor, stands out for its high switch ratio, carrier mobility and excellent stability in air. Directly contacting the 2D semiconductor materials with metal electrodes is a feasible doping means to inject carriers. However, Schottky barrier often arises at the metal–semiconductors interface, impeding the transport of carriers. Herein, we investigate the interfacial properties of BL tellurene by contacting with various metals including graphene by using ab initio calculations and quantum transport simulations. Vertical Schottky barriers take place in Ag, Al, Au and Cu electrodes according to the maintenance of the noncontact tellurene layer band structure. Besides, a p-type vertical Schottky contact is formed due to the van der Waals interaction for graphene electrode. As for the lateral direction, p-type Schottky contacts take shape for bulk metal electrodes(hole Schottky barrier heights(SBHs) ranging from 0.19 to 0.35 eV). Strong Fermi level pinning takes place with a pinning factor of 0.02. Notably, a desirable p-type quasi-Ohmic contact is developed for graphene electrode with a hole SBH of 0.08 eV. Our work sheds light on the interfacial properties of BL tellurene based transistors and could guide the experimental selections on electrodes.展开更多
Persistent froth is becoming more and more common in coal and mineral flotation plants and presents safety and operational challenges.No effective method has been developed to destabilise persistent froth.As a new ini...Persistent froth is becoming more and more common in coal and mineral flotation plants and presents safety and operational challenges.No effective method has been developed to destabilise persistent froth.As a new initiative,this study examined the structural difference between persistent foam and coal froth,based on which a solution was developed to maximumly destabilise coal froth.Destabilisation test,oscillatory rheology measurement and scanning electron microscopy(SEM) analysis indicated that the coal froth was more stable than the foam due to the formation of thin capillaries and tightly arranged coal particles on bubble surfaces.Although 107 μm silicone oil droplet could completely destabilise the foam at 2 mmol/L concentration,it only destabilised less than 50% coal froth even at 6 mmol/L concentration.To maximumly destabilise the coal froth formed by-38 and-20 μm particles,24 and 18 μm silicone oil droplets were required to pass through the thin capillaries and enter the bubble films,respectively.However,smaller silicone oil droplets could not bridge the bubble films to destabilise coal froth and therefore a critical droplet size occurred depending on the size of particles stabilising the froth.展开更多
Breast cancer,particularly Invasive Ductal Carcinoma(IDC),is a primary global health concern predominantly affecting women.Early and precise diagnosis is crucial for effective treatment planning.Several AI-based tech-...Breast cancer,particularly Invasive Ductal Carcinoma(IDC),is a primary global health concern predominantly affecting women.Early and precise diagnosis is crucial for effective treatment planning.Several AI-based tech-niques for IDC-level classification have been proposed in recent years.Processing speed,memory size,and accuracy can still be improved for better performance.Our study presents ECAM,an Enhanced Channel-Wise Attention Mechanism,using deep learning to analyze histopathological images of Breast Invasive Ductal Carcinoma(BIDC).The main objectives of our study are to enhance computational efficiency using a Separable CNN architecture,improve data representation through hierarchical feature aggregation,and increase accuracy and interpretability with channel-wise attention mechanisms.Utilizing publicly available datasets,DataBioX IDC and the BreakHis,we benchmarked the proposed ECAM model against existing state-of-the-art models:DenseNet121,VGG16,and AlexNet.In the IDC dataset,the model based on AlexNet achieved an accuracy rate of 86.81%and an F1 score of 86.94%.On the other hand,DenseNet121 outperformed with an accuracy of 95.60%and an F1 score of 95.75%.Meanwhile,the VGG16 model achieved an accuracy rate of 91.20%and an F1 score of 90%.Our proposed ECAM model outperformed the state-of-the-art,achieving an impressive F1 score of 96.65%and an accuracy rate of 96.70%.The BreakHis dataset,the AlexNet-based model,achieved an accuracy rate of 90.82%and an F1 score of 90.77%.DenseNet121 achieved a higher accuracy rate of 92.66%with an F1 score of 92.72%,while the VGG16 model achieved an accuracy of 92.60%and an F1 score of 91.31%.The proposed ECAM model again outperformed,achieving an F1 score of 96.37%and an accuracy rate of 96.33%.Our model is a significant advancement in breast cancer diagnosis,with high accuracy and potential as an automated grading,especially for IDC.展开更多
Garlic,an economically important vegetable,spice,and medicinal crop,produces highly enlarged bulbs and unique organosulfur compounds.Here,we report a chromosome-level genome assembly for garlic,with a total size of ap...Garlic,an economically important vegetable,spice,and medicinal crop,produces highly enlarged bulbs and unique organosulfur compounds.Here,we report a chromosome-level genome assembly for garlic,with a total size of approximately 16.24 Gb,as well as the annotation of 57561 predicted protein-coding genes,making garlic the first Allium species with a sequenced genome.Analysis of this garlic genome assembly reveals a recent burst of transposable elements,explaining the substantial expansion of the garlic genome.We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans,and provided new insights into the biosynthesis of these two compounds.Furthermore,a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs.The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.展开更多
The rapid expansion of renewable energies asks for great progress of energy-storage technologies for sustainable energy supplies,which raises the compelling demand of high-performance rechargeable batteries.To satisfy...The rapid expansion of renewable energies asks for great progress of energy-storage technologies for sustainable energy supplies,which raises the compelling demand of high-performance rechargeable batteries.To satisfy the huge demand from the coming energy-storage market,the resource and cost-effectiveness of rechargeable batteries become more and more important.Manganese(Mn)as a key transition element with advantages including high abundance,low cost,and low toxicity derives various kinds(spinels,layered oxides,polyanions,Prussian blue analogs,etc.)of high-performance Mn-based electrode materials,especially cathodes,for rechargeable batteries ranging from Li-ion batteries,Na-ion batteries,aqueous batteries,to multivalent metal-ion batteries.It is anticipated that Mn-based materials with Mn as the major transition-metal element will constitute a flourishing family of Mn-based rechargeable batteries(Mn RBs)for large-scale and differentiated energy-storage applications.On the other hand,several critical issues including Jahn-Teller effect,Mn dissolution,and O release greatly hinder the pace of Mn RBs,which require extensive material optimizations and battery/system improvements.This review aims to provide an investigation about Mn-based materials and batteries for the coming energy-storage demands,with compelling issues and challenges that must be overcome.展开更多
Brown adipose tissue(BAT)is the major site of non-shivering thermogenesis and crucial for systemic metabolism.Under chronic cold exposures and high-fat diet challenges,BAT undergoes robust remodeling to adapt to physi...Brown adipose tissue(BAT)is the major site of non-shivering thermogenesis and crucial for systemic metabolism.Under chronic cold exposures and high-fat diet challenges,BAT undergoes robust remodeling to adapt to physiological demands.However,whether and how BAT regenerates after acute injuries are poorly understood.Here,we established a novel BAT injury and regeneration model(BAT-IR)in mice and performed single-cell RNA sequencing(scRNA-seq)and bulk RNA-seq to determine cellular and transcriptomic dynamics during BAT-IR.We further defined distinct fibro-adipogenic and myeloid progenitor populations contributing to BAT regeneration.Cell trajectory and gene expression analyses uncovered the involvement of MAPK,Wnt,and Hedgehog(Hh)signaling pathways in BAT regeneration.We confirmed the role of Hh signaling in BAT development through Myf5Cre-mediated conditional knockout(cKO)of the Sufu gene to activate Hh signaling in BAT and muscle progenitors.Our BAT-IR model therefore provides a paradigm to identify conserved cellular and molecular mechanisms underlying BAT development and remodeling.展开更多
This study was conducted to investigate the effects of fermented mixed feed(FMF)on growth performance,carcass traits,meat quality,muscle amino acid and fatty acid composition and mRNA expression levels of genes relate...This study was conducted to investigate the effects of fermented mixed feed(FMF)on growth performance,carcass traits,meat quality,muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs.In the present study,144 finishing pigs(Duroc×Berkshire×Jiaxing Black)were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen.The dietary treatments included a basal diet(CON),a basal diet+5%FMF and a basal diet+10%FMF.The experiment lasted 38 d after 4 d of acclimation.The results showed that 5%and 10%FMF significantly increased the average daily gain(ADG)of the females but not the males(P<0.05),but FMF supplementation showed no impact on carcass traits.Moreover,10%FMF supplementation increased the meat color45 min and meat color24 h values,while it decreased the shear force relative to CON(P<0.05).In addition,10%FMF significantly increased the contents of flavor amino acids(FAA),total essential AA(EAA),total non-EAA(NEAA)and total AA relative to CON(P<0.05).Furthermore,the diet supplemented with 10%FMF significantly increased the concentration of n-3 polyunsaturated fatty acids(PUFA),n-6 PUFA and total PUFA,and the PUFA to saturated fatty acids ratio(P<0.05),suggesting that FMF supplementation increased meat quality.Moreover,compared with the CON,10%FMF supplementation increased the mRNA expression of lipogenic genes,including CEBPα,PPARγ,SREBP1 and FABP4,and upregulated the expression of unsaturated fatty acid synthesis(ACAA1 and FADS2).Together,our results suggest that 10%FMF dietary supplementation improved the female pigs’growth performance,improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs.This study provides a reference for the production of high-quality pork.展开更多
Li-ion batteries are widely used in electric vehicles(EVs).However,the accuracy of online SOC estimation is still challenging due to the time-varying parameters in batteries.This paper proposes a decoupling multiple f...Li-ion batteries are widely used in electric vehicles(EVs).However,the accuracy of online SOC estimation is still challenging due to the time-varying parameters in batteries.This paper proposes a decoupling multiple forgetting factors recursive least squares method(DMFFRLS)for EV battery parameter identification.The errors caused by the different parameters are separated and each parameter is tracked independently taking into account the different physical characteristics of the battery parameters.The Thevenin equivalent circuit model(ECM)is employed considering the complexity of battery management system(BMS)on the basis of comparative analysis of several common battery ECMs.In addition,decoupling multiple forgetting factors are used to update the covariance due to different degrees of error of each parameter in the identification process.Numerous experiments are employed to verify the proposed DMFFRLS method.The parameters for commonly used LiFePO4(LFP),Li(NiCoMn)O2(NCM)battery cells and battery packs are identified based on the proposed DMFFRLS method and three conventional methods.The experimental results show that the error of the DMFFRLS method is less than 15 mV,which is significantly lower than the conventional methods.The proposed DMFFRLS shows good performance for parameter identification on different kind of batteries,and provides a basis for state of charge(SOC)estimation and BMS design of EVs.展开更多
In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of pos...In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of post fracturing high-rank coal reservoir, Warren-Root Model is improved. A new physical model that is more suitable for post fracturing high-rank coal reservoir is established. The results show that the width, the flow conductivity and the permeability of hydraulic fractures are much larger than natural fractures in coal bed reservoir. Hydraulic fracture changes the flow pattern of gas and flow channel to wellbore, thus should be treated as an independent medium. Warrant-Root Model has some limitations and can’t give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Modified Warrant-Root Model simplifies coal bed reservoir to an ideal system with hydraulic fracture, orthogonal macroscopic fracture and cuboid matrix. Hydraulic fracture is double wing, vertical and symmetric to wellbore. Coal bed reservoir is divided into cuboids by hydraulic fracture and further by macroscopic fractures. Flow behaviors in coal bed reservoir are simplified to three step flows of gas and two step flows of water. The swap mode of methane between coal matrix and macroscopic fractures is pseudo steady fluid channeling. The flow behaviors of methane to wellbore no longer follow Darcy’s Law and are mainly affected by inertia force. The flow pattern of water follows Darcy’s Law. The new physical model is more suitable for post fracturing high-rank coal reservoir.展开更多
基金the National Natural Science Foundation of China(Nos.42061134020,32070380)the Natural Science Foundation of Shandong Province(No.ZR2019ZD17)。
文摘Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions.
基金Supported by the National Natural Science Foundation of China (Nos. 42061134020, 32070380)the Natural Science Foundation of Shandong Province (No. ZR2019ZD17)
文摘In this article,the legend for Fig.3 f&g was inadvertently mislabeled.The figure below shows the wrong one.The figure should have appeared as shown below.
基金Major Program of National Natural Science Foundation of China(NSFC12292980,NSFC12292984)National Key R&D Program of China(2023YFA1009000,2023YFA1009004,2020YFA0712203,2020YFA0712201)+2 种基金Major Program of National Natural Science Foundation of China(NSFC12031016)Beijing Natural Science Foundation(BNSFZ210003)Department of Science,Technology and Information of the Ministry of Education(8091B042240).
文摘Gliomas have the highest mortality rate of all brain tumors.Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’survival rates.This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network(HMAC-Net),which effectively combines global features and local features.The network framework consists of three parallel layers:The global feature extraction layer,the local feature extraction layer,and the multi-scale feature fusion layer.A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy.In the local feature extraction layer,a bilateral local attention mechanism is introduced to improve the extraction of relevant information between adjacent slices.In the multi-scale feature fusion layer,a channel fusion block combining convolutional attention mechanism and residual inverse multi-layer perceptron is proposed to prevent gradient disappearance and network degradation and improve feature representation capability.The double-branch iterative multi-scale classification block is used to improve the classification performance.On the brain glioma risk grading dataset,the results of the ablation experiment and comparison experiment show that the proposed HMAC-Net has the best performance in both qualitative analysis of heat maps and quantitative analysis of evaluation indicators.On the dataset of skin cancer classification,the generalization experiment results show that the proposed HMAC-Net has a good generalization effect.
基金supported by the Student’s Platform for Innovation and Entrepreneurship Training Program, China (Grant No. 201510062001)
文摘Objective: Vasculogenic mimicry(VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors.However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells(CSCs) are positively correlated with VM. In this study, triple-negative breast cancer(TNBC) enriched with CSCs was used to investigate the relationship between VM and CSCs.Methods: The expression of several CSC markers was detected by immunohistochemistry in 100 human breast cancer samples.The clinical significance of CSC markers and the relationship between VM, CSCs, breast cancer subtypes, and VM-associated proteins were analyzed. CD133+ and ALDH+ human and mouse TNBC cells were isolated by FACS to examine the ability of VM formation and the spatial relationship between VM and CSCs.Results: CSCs were associated with TNBC subtype and VM in human invasive breast cancer. CSCs in TNBC MDA-MB-231 cells formed more VM channels and expressed more molecules promoting VM than the non-TNBC MCF-7 cells in vitro. MDA-MB-231 cells that encircled VM channels on Matrigel expressed CD133. Moreover, CSCs were located near VM channels in the 3D reconstructed blood supply system in human TNBC grafts. The CD133+ and ALDH+ cells isolated from TA2 mouse breast cancer formed more VM channels in vivo.Conclusions: CSCs line VM channels directly. Additionally, CSCs provide more VM-related molecules to synergize VM formation. The signaling pathways that control CSC differentiation may also be potential treatment targets for TNBC.
基金funded by the National Major Scientific Research Instrument Development Project(No.41727801)the National Natural Science Foundation of China(Nos.42030810 and 41972168)+1 种基金the Dominant discipline support project of Jiangsu Province(No.2020CXNL11)the Foundation of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization(No.2019A001).
文摘Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data.The results show that the stress-strain curve could be divided into four stages in a single cycle.The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate;irreversible strain and dissipated energy density increase exponentially with deviatoric stress,inversely proportional to the confining pressure and loading rate.The internal structure of tectonic coal is divided into three types,all of which are damaged under different deviatoric stress levels,thereby explaining the segmentation phenomenon of stress-strain curve of tectonic coal in the cyclic loading process.Tectonic coal exhibits nonlinear energy storage characteristics,which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation.In addition,the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy.
基金supported by“the Fundamental Research Funds for the Central Universities”(2019YC19)the Special Foundation for National Science and Technology Basic Research Program of China(No.2019FY100803)the Fundamental Research Funds for the Central Universities of China from the Chinese Ministry of Education(2015ZCQLX-02)。
文摘Sapindus L.species are widely cultivated for biodiesel,biomedical,and biochemical raw materials in southern China.However,yields fuctuate widely due to the lack of high-yielding,high-quality,stable cultivars.Therefore,the objectives of this study were to evaluate three species and one variety among 149 nationwide Sapindus species and screen for elite accessions which would serve as Sapindus breeding materials.Accessions were evaluated on 19 agro-morphological traits by correlation analysis and principal component analysis.These displayed substantial diversity and a broad range of economic traits.In particular,accessions of Sapindus mukorossi and Sapindus rarak had more variation in economic traits than Sapindus delavayi and Sapindus rarak var.velutinus.Increased saponin accumulation may be achieved at the cost of seed oil production.Thirty elite accessions for oil and saponin production,and for comprehensive utilization were screened and accessions no.80,110,and 112 had significant potential to produce high yields.These elite accessions will facilitate the identification of genetic determinants of valuable traits and the effective utilization of trait variability in Sapindus breeding.
基金supported by the National Natural Science Foundation of China(Nos.11674005,11664026,11704406)the National Materials Genome Project of China(No2016YFB0700600)+4 种基金the Key Research and Development Program of Ningxia(No.2018BEE03023)the Natural Science Foundation of Ningxia(No.2018AAC03236)the Higher Schoo Scientific Research Project of Ningxia Department of Education(No.NGY2018-130)the Key Scientific Research Project of Ningxia Normal University(No.NXSFZDA1807)the Youth Talent Support Program of Ningxia,China(2016)
文摘Tellurene, an emerging two-dimensional chain-like semiconductor, stands out for its high switch ratio, carrier mobility and excellent stability in air. Directly contacting the 2D semiconductor materials with metal electrodes is a feasible doping means to inject carriers. However, Schottky barrier often arises at the metal–semiconductors interface, impeding the transport of carriers. Herein, we investigate the interfacial properties of BL tellurene by contacting with various metals including graphene by using ab initio calculations and quantum transport simulations. Vertical Schottky barriers take place in Ag, Al, Au and Cu electrodes according to the maintenance of the noncontact tellurene layer band structure. Besides, a p-type vertical Schottky contact is formed due to the van der Waals interaction for graphene electrode. As for the lateral direction, p-type Schottky contacts take shape for bulk metal electrodes(hole Schottky barrier heights(SBHs) ranging from 0.19 to 0.35 eV). Strong Fermi level pinning takes place with a pinning factor of 0.02. Notably, a desirable p-type quasi-Ohmic contact is developed for graphene electrode with a hole SBH of 0.08 eV. Our work sheds light on the interfacial properties of BL tellurene based transistors and could guide the experimental selections on electrodes.
基金ACARP (Australian Coal Association Research Program) project C24040 for financial supportscholarship provided by the University of QueenslandChina Scholarship Council。
文摘Persistent froth is becoming more and more common in coal and mineral flotation plants and presents safety and operational challenges.No effective method has been developed to destabilise persistent froth.As a new initiative,this study examined the structural difference between persistent foam and coal froth,based on which a solution was developed to maximumly destabilise coal froth.Destabilisation test,oscillatory rheology measurement and scanning electron microscopy(SEM) analysis indicated that the coal froth was more stable than the foam due to the formation of thin capillaries and tightly arranged coal particles on bubble surfaces.Although 107 μm silicone oil droplet could completely destabilise the foam at 2 mmol/L concentration,it only destabilised less than 50% coal froth even at 6 mmol/L concentration.To maximumly destabilise the coal froth formed by-38 and-20 μm particles,24 and 18 μm silicone oil droplets were required to pass through the thin capillaries and enter the bubble films,respectively.However,smaller silicone oil droplets could not bridge the bubble films to destabilise coal froth and therefore a critical droplet size occurred depending on the size of particles stabilising the froth.
文摘Breast cancer,particularly Invasive Ductal Carcinoma(IDC),is a primary global health concern predominantly affecting women.Early and precise diagnosis is crucial for effective treatment planning.Several AI-based tech-niques for IDC-level classification have been proposed in recent years.Processing speed,memory size,and accuracy can still be improved for better performance.Our study presents ECAM,an Enhanced Channel-Wise Attention Mechanism,using deep learning to analyze histopathological images of Breast Invasive Ductal Carcinoma(BIDC).The main objectives of our study are to enhance computational efficiency using a Separable CNN architecture,improve data representation through hierarchical feature aggregation,and increase accuracy and interpretability with channel-wise attention mechanisms.Utilizing publicly available datasets,DataBioX IDC and the BreakHis,we benchmarked the proposed ECAM model against existing state-of-the-art models:DenseNet121,VGG16,and AlexNet.In the IDC dataset,the model based on AlexNet achieved an accuracy rate of 86.81%and an F1 score of 86.94%.On the other hand,DenseNet121 outperformed with an accuracy of 95.60%and an F1 score of 95.75%.Meanwhile,the VGG16 model achieved an accuracy rate of 91.20%and an F1 score of 90%.Our proposed ECAM model outperformed the state-of-the-art,achieving an impressive F1 score of 96.65%and an accuracy rate of 96.70%.The BreakHis dataset,the AlexNet-based model,achieved an accuracy rate of 90.82%and an F1 score of 90.77%.DenseNet121 achieved a higher accuracy rate of 92.66%with an F1 score of 92.72%,while the VGG16 model achieved an accuracy of 92.60%and an F1 score of 91.31%.The proposed ECAM model again outperformed,achieving an F1 score of 96.37%and an accuracy rate of 96.33%.Our model is a significant advancement in breast cancer diagnosis,with high accuracy and potential as an automated grading,especially for IDC.
基金supported by grants from the National Key R&D Program of China(2016YFD040024)the Agricultural Science and Technology Innovation Program of China(CAAS-ASTIP-lBFC)the National Natural Science Foundation of China(31772323,31871678,and 31972000).
文摘Garlic,an economically important vegetable,spice,and medicinal crop,produces highly enlarged bulbs and unique organosulfur compounds.Here,we report a chromosome-level genome assembly for garlic,with a total size of approximately 16.24 Gb,as well as the annotation of 57561 predicted protein-coding genes,making garlic the first Allium species with a sequenced genome.Analysis of this garlic genome assembly reveals a recent burst of transposable elements,explaining the substantial expansion of the garlic genome.We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans,and provided new insights into the biosynthesis of these two compounds.Furthermore,a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs.The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.
基金financially supported by the National Key R&D Program of China(2022YFB2404400)the National Natural Science Foundation of China(92263206,21875007,21975006,21974007,and U19A2018)+1 种基金the Youth Beijing Scholars program(PXM2021_014204_000023)the Beijing Natural Science Foundation(2222001 and KZ202010005007)。
文摘The rapid expansion of renewable energies asks for great progress of energy-storage technologies for sustainable energy supplies,which raises the compelling demand of high-performance rechargeable batteries.To satisfy the huge demand from the coming energy-storage market,the resource and cost-effectiveness of rechargeable batteries become more and more important.Manganese(Mn)as a key transition element with advantages including high abundance,low cost,and low toxicity derives various kinds(spinels,layered oxides,polyanions,Prussian blue analogs,etc.)of high-performance Mn-based electrode materials,especially cathodes,for rechargeable batteries ranging from Li-ion batteries,Na-ion batteries,aqueous batteries,to multivalent metal-ion batteries.It is anticipated that Mn-based materials with Mn as the major transition-metal element will constitute a flourishing family of Mn-based rechargeable batteries(Mn RBs)for large-scale and differentiated energy-storage applications.On the other hand,several critical issues including Jahn-Teller effect,Mn dissolution,and O release greatly hinder the pace of Mn RBs,which require extensive material optimizations and battery/system improvements.This review aims to provide an investigation about Mn-based materials and batteries for the coming energy-storage demands,with compelling issues and challenges that must be overcome.
基金the National Key R&D Program of China(2018YFA0800403)the National Natural Science Foundation of China(31722053)the“Hundred Talents Program”funding from Zhejiang University to Tizhong Shan.
文摘Brown adipose tissue(BAT)is the major site of non-shivering thermogenesis and crucial for systemic metabolism.Under chronic cold exposures and high-fat diet challenges,BAT undergoes robust remodeling to adapt to physiological demands.However,whether and how BAT regenerates after acute injuries are poorly understood.Here,we established a novel BAT injury and regeneration model(BAT-IR)in mice and performed single-cell RNA sequencing(scRNA-seq)and bulk RNA-seq to determine cellular and transcriptomic dynamics during BAT-IR.We further defined distinct fibro-adipogenic and myeloid progenitor populations contributing to BAT regeneration.Cell trajectory and gene expression analyses uncovered the involvement of MAPK,Wnt,and Hedgehog(Hh)signaling pathways in BAT regeneration.We confirmed the role of Hh signaling in BAT development through Myf5Cre-mediated conditional knockout(cKO)of the Sufu gene to activate Hh signaling in BAT and muscle progenitors.Our BAT-IR model therefore provides a paradigm to identify conserved cellular and molecular mechanisms underlying BAT development and remodeling.
基金This work was partially supported by the National Key R&D Program of China(2021YFC2103005)the Zhejiang Provincial Key R&D Program of China(2021C02008).
文摘This study was conducted to investigate the effects of fermented mixed feed(FMF)on growth performance,carcass traits,meat quality,muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs.In the present study,144 finishing pigs(Duroc×Berkshire×Jiaxing Black)were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen.The dietary treatments included a basal diet(CON),a basal diet+5%FMF and a basal diet+10%FMF.The experiment lasted 38 d after 4 d of acclimation.The results showed that 5%and 10%FMF significantly increased the average daily gain(ADG)of the females but not the males(P<0.05),but FMF supplementation showed no impact on carcass traits.Moreover,10%FMF supplementation increased the meat color45 min and meat color24 h values,while it decreased the shear force relative to CON(P<0.05).In addition,10%FMF significantly increased the contents of flavor amino acids(FAA),total essential AA(EAA),total non-EAA(NEAA)and total AA relative to CON(P<0.05).Furthermore,the diet supplemented with 10%FMF significantly increased the concentration of n-3 polyunsaturated fatty acids(PUFA),n-6 PUFA and total PUFA,and the PUFA to saturated fatty acids ratio(P<0.05),suggesting that FMF supplementation increased meat quality.Moreover,compared with the CON,10%FMF supplementation increased the mRNA expression of lipogenic genes,including CEBPα,PPARγ,SREBP1 and FABP4,and upregulated the expression of unsaturated fatty acid synthesis(ACAA1 and FADS2).Together,our results suggest that 10%FMF dietary supplementation improved the female pigs’growth performance,improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs.This study provides a reference for the production of high-quality pork.
基金This work was supported by Science and Technology Project of State Grid Corporation of China(5202011600U5).
文摘Li-ion batteries are widely used in electric vehicles(EVs).However,the accuracy of online SOC estimation is still challenging due to the time-varying parameters in batteries.This paper proposes a decoupling multiple forgetting factors recursive least squares method(DMFFRLS)for EV battery parameter identification.The errors caused by the different parameters are separated and each parameter is tracked independently taking into account the different physical characteristics of the battery parameters.The Thevenin equivalent circuit model(ECM)is employed considering the complexity of battery management system(BMS)on the basis of comparative analysis of several common battery ECMs.In addition,decoupling multiple forgetting factors are used to update the covariance due to different degrees of error of each parameter in the identification process.Numerous experiments are employed to verify the proposed DMFFRLS method.The parameters for commonly used LiFePO4(LFP),Li(NiCoMn)O2(NCM)battery cells and battery packs are identified based on the proposed DMFFRLS method and three conventional methods.The experimental results show that the error of the DMFFRLS method is less than 15 mV,which is significantly lower than the conventional methods.The proposed DMFFRLS shows good performance for parameter identification on different kind of batteries,and provides a basis for state of charge(SOC)estimation and BMS design of EVs.
基金supported by the National Natural Science Foundation of China (Nos. 41330638, 41272154, 51325403, 51104148, and 51204162)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1302049B)
文摘In this paper, influences on the reservoir permeability, the reservoir architecture and the fluid flow pattern caused by hydraulic fracturing are analyzed. Based on the structure and production fluid flow model of post fracturing high-rank coal reservoir, Warren-Root Model is improved. A new physical model that is more suitable for post fracturing high-rank coal reservoir is established. The results show that the width, the flow conductivity and the permeability of hydraulic fractures are much larger than natural fractures in coal bed reservoir. Hydraulic fracture changes the flow pattern of gas and flow channel to wellbore, thus should be treated as an independent medium. Warrant-Root Model has some limitations and can’t give a comprehensive interpretation of seepage mechanism in post fracturing high-rank coal reservoir. Modified Warrant-Root Model simplifies coal bed reservoir to an ideal system with hydraulic fracture, orthogonal macroscopic fracture and cuboid matrix. Hydraulic fracture is double wing, vertical and symmetric to wellbore. Coal bed reservoir is divided into cuboids by hydraulic fracture and further by macroscopic fractures. Flow behaviors in coal bed reservoir are simplified to three step flows of gas and two step flows of water. The swap mode of methane between coal matrix and macroscopic fractures is pseudo steady fluid channeling. The flow behaviors of methane to wellbore no longer follow Darcy’s Law and are mainly affected by inertia force. The flow pattern of water follows Darcy’s Law. The new physical model is more suitable for post fracturing high-rank coal reservoir.