The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop...The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.展开更多
Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magne...Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.展开更多
Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room tempera...Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, p-d exchange interaction. With this s, p-d exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, p-d interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth.展开更多
Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due...Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due to the complicated and continuous changing in the battery internal environment.Here,we design a novel iron fluoride(FeF_(2))aggregate assembled with cylindrical nanoparticles as cathode material to build FeF_(2) lithium-ion batteries(LIBs)and employ advanced in situ magnetometry to detect their intrinsic electronic structure during cycling in real time.The results show that FeF_(2) cannot be involved in complete conversion reactions when the FeF_(2) LIBs operate between the conventional voltage range of 1.0–4.0 V,and that the corresponding conversion ratio of FeF_(2) can be further estimated.Importantly,we first demonstrate that the spin-polarized surface capacitance exists in the FeF_(2) cathode by monitoring the magnetic responses over various voltage ranges.The research presents an original and insightful method to examine the conversion mechanism of TMFs and significantly provides an important reference for the future artificial design of energy systems based on spinpolarized surface capacitance.展开更多
2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivi...2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivities were used to fabricate the ZnO-based semiconductor spin valve. Since the CoZnO ferromagnetic semiconductor layers touched the ZnO space layer directly, the significant spin injection from CoZnO into ZnO was observed by measuring the magnetoresistance of the spin-injection devices. The magnetoresistance reduced linearly with increasing temperature, from 1.12% at 90 K to 0.35% at room temperature.展开更多
The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe...The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG(MYIG) can be rotated with respect to that of NiFe(MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current(σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.展开更多
[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observe...[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10).展开更多
The Rashba effect and valley polarization provide a novel paradigm in quantum information technology. However,practical materials are scarce. Here, we found a new class of Janus monolayers VXY(X = Cl, Br, I;Y = Se, Te...The Rashba effect and valley polarization provide a novel paradigm in quantum information technology. However,practical materials are scarce. Here, we found a new class of Janus monolayers VXY(X = Cl, Br, I;Y = Se, Te) with excellent valley polarization effect. In particular, Janus VBrSe shows Zeeman type spin splitting of 14 meV, large Berry curvature of 182.73 bohr2,and, at the same time, a large Rashba parameter of 176.89 meV·?. We use the k·p theory to analyze the relationship between the lattice constant and the curvature of the Berry. The Berry curvature can be adjusted by changing the lattice parameter,which will greatly improve the transverse velocities of carriers and promote the efficiency of the valley Hall device. By applying biaxial strain onto VBrSe, we can see that there is a correlation between Berry curvature and lattice constant, which further validates the above theory. All these results provide tantalizing opportunities for efficient spintronics and valleytronics.展开更多
The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic in...The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents (σsc), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electro-chemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements.展开更多
We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a ...We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a Lagrangian equation and a Rayleigh dissipation function,we predicted that the resonance linewidth△H as a function of microwave frequencyωis nonlinear for both acoustic and optical modes in the Cr Cl;flake,which is significantly different from the linear relationship of△H-ωin ferromagnets.Measuring the microwave transmission through the Cr Cl;flake,we obtained theω–H dispersion and damping evolution△H–ωfor both acoustic and optical modes.Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution△H–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.展开更多
The pre-edges of oxygen-K X-ray absorption spectra have been ubiquitous in transition metal(TM)oxide studies in various fields,especially on the fervent topic of oxygen redox states in battery electrodes.However,criti...The pre-edges of oxygen-K X-ray absorption spectra have been ubiquitous in transition metal(TM)oxide studies in various fields,especially on the fervent topic of oxygen redox states in battery electrodes.However,critical debates remain on the use of the O-K pre-edge variations upon electrochemical cycling as evidences of oxygen redox reactions,which has been a popular practice in the battery field.This study presents an investigation of the O-K pre-edge of 55 oxides covering all 3d TMs with different elements,structures,and electrochemical states through combined experimental and theoretical analyses.It is shown unambiguously that the O-K pre-edge variation in battery cathodes is dominated by changing TM-d states.Furthermore,the pre-edge enables a unique opportunity to project the lowest unoccupied TM-d states onto one common energy window,leading to a summary map of the relative energy positions of the low-lying TM states,with higher TM oxidation states at lower energies,corresponding to higher electrochemical potentials.The results naturally clarify some unusual redox reactions,such as Cr^(3+/6+).This work provides a critical clarification on O-K pre-edge interpretation and more importantly a benchmark database of O-K pre-edge for characterizing redox reactions in batteries and other energy materials.展开更多
Dual topological insulator(DTI),which simultaneously hosts topological insulator(TI)and topological crystalline insulator(TCI)phases,has attracted extensive attention since it has a better robustness of topological na...Dual topological insulator(DTI),which simultaneously hosts topological insulator(TI)and topological crystalline insulator(TCI)phases,has attracted extensive attention since it has a better robustness of topological nature and broad application prospects in spintronics.However,the realization of DTI phase in two-dimensional(2D)system is extremely scarce.By first-principles calculations,we predict that the 2D rectangular bismuth(R–Bi)bilayer is a novel DTI,featured by topological invariant=1,mirror Chern number C_(M)=–1,and metallic edge states within the bulk band gap.More interestingly,the TCI phase in bilayer is protected by horizontal glide mirror symmetries,rather than the usual mirror symmetry.The bulk band gap can be effectively tuned by vertical electric field and strain.Besides,the electric field can trigger the transition between TI and metallic phases for the bilayer,accompanied by the annihilation of TCI phase.On this basis,a topological field effect transistor is proposed,which can rapidly manipulate spin and charge carriers via electric field.The KBr(110)surface is demonstrated as an ideal substrate for the deposition of bilayer.These findings provide not only a new strategy for exploiting 2D DTI,but also a promising candidate for spintronic applications.展开更多
Artificial synapses are electronic devices that simulate important functions of biological synapses,and therefore are the basic components of artificial neural morphological networks for brain-like computing.One of th...Artificial synapses are electronic devices that simulate important functions of biological synapses,and therefore are the basic components of artificial neural morphological networks for brain-like computing.One of the most important objectives for developing artificial synapses is to simulate the characteristics of biological synapses as much as possible,especially their self-adaptive ability to external stimuli.Here,we have successfully developed an artificial synapse with multiple synaptic functions and highly adaptive characteristics based on a simple SrTiO_(3)/Nb:SrTiO_(3)heterojunction type memristor.Diverse functions of synaptic learning,such as short-term/long-term plasticity(STP/LTP),transition from STP to LTP,learning–forgetting–relearning behaviors,associative learning and dynamic filtering,are all bio-realistically implemented in a single device.The remarkable synaptic performance is attributed to the fascinating inherent dynamics of oxygen vacancy drift and diffusion,which give rise to the coexistence of volatile-and nonvolatile-type resistive switching.This work reports a multi-functional synaptic emulator with advanced computing capability based on a simple heterostructure,showing great application potential for a compact and low-power neuromorphic computing system.展开更多
Praseodymium-ion-doped gain materials have the superiority of lasing at various visible wavelengths directly.Simple and compact visible lasers are booming with the development of blue laser diodes in recent years.In t...Praseodymium-ion-doped gain materials have the superiority of lasing at various visible wavelengths directly.Simple and compact visible lasers are booming with the development of blue laser diodes in recent years.In this Letter, we demonstrate the watt-level red laser with a single blue laser diode and Pr:YLiF4 crystal.On this basis,the passively Q-switched pulse lasers are obtained with monolayer graphene and Co:ZnO thin film as the Q-switchers in the visible range.展开更多
Efficient and economical electrocatalysts should be developed for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)to split water for an extensive application prospect of green and clean hydrogen ener...Efficient and economical electrocatalysts should be developed for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)to split water for an extensive application prospect of green and clean hydrogen energy.Here,we develop highly efficient OER and HER electrocatalysts through the scalable fabrication of Ni Fe Zn hydroxide nanosheets firmly arrayed on a hierarchical porous intermetallic Ni Zn and Ni heterojunction over nickel foam(Ni Fe Zn-OH/Ni Zn-Ni/NF).One bimodal porous Ni Zn intermetallic/Ni layer is in situ constructed on the nickel foam surface to maximize the exposure of catalytic sites and build firm Ni Fe Zn-OH nanosheets via the redox reaction with Fe Cl;.Ni Fe Zn-OH/Ni Zn-Ni/NF shows low overpotentials of?50/600 around 235/284 m V for OER and?50/600 around73/212 m V for HER,small Tafel slopes of 46.1 and41.1 m V dec^(-1),and prolonged catalytic durability in an alkaline medium because of the strong synergistic effects of Zn doping,multiple interface engineering,and integral threedimensional free-standing scaffold.As bifunctional catalysts,Ni Fe Zn-OH/Ni Zn-Ni/NF required a low electrolytic voltage of1.49 V at 20 m A cm^(-2)(1.61 V at 100 m A cm^(-2))with a sustained and stable output for 40 h during water splitting.This work might provide insights into the exploration of low-cost and highly efficient intermetallic/multimetallic hydroxide heterostructured electrocatalysts for practical overall water splitting.展开更多
To achieve a flexible single-crystal multifunctional membrane,the freestanding process of a rigid epitaxial transition metal oxide thin film via a buffered water-dissolution sacrificial layer has attracted reasonable ...To achieve a flexible single-crystal multifunctional membrane,the freestanding process of a rigid epitaxial transition metal oxide thin film via a buffered water-dissolution sacrificial layer has attracted reasonable attentions.Owing to the difference in chemical potential,specific element affinity,and lattice constant between the target membrane and the sacrificial layer,the freestanding process may cause an indelible change of physics property once the target thin film is sensitive to the above factors.Here,the heterostructures composed of the generally adopted sacrificial layer Sr_(3)Al_(2)O_(6)(SAO)and LaMnO_(3)(LMO)have been systematically investigated.The electrical and magnetic properties of LMO show extreme sensitivity to the thickness of SAO(tSAO).Then we have also found that LMO/SAO heterostructures can exhibit the coexistence of two ferromagnetic phases,the significantly enhanced Curie temperature~342 K,and the large magnetoresistance-23.3%at 300 K,which is similar to the optimal-doped manganite such as La_(2/3)Sr_(1/3)MnO_(3).X-ray diffraction results show that continuously tunable strain from out-of-plane tension to relaxation and then to compression can be generated by adjusting tSAO.This strain can stabilize the migrated oxygen from LMO to SAO,which is induced by the large oxygen affinity difference between Bsite Mn and Al.It is believed that these unexpected electrical/magnetic phenomena are originated from the combined effects of interfacial element diffusion and strain.Our study provides a strategy for designing new magnetic phases,and a reference for the fundamental understanding of strongly correlated transition metal oxide systems in the freestanding process.展开更多
Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space char...Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space charge storage in AMIBs has been less investigated experimentally,mostly due to the complicated electrochemical behavior and lack of proper characterization techniques.Here,we use operando magnetometry to verify that in FeSe_(2)AMIBs,abundant Li^(+)/Na^(+)/K^(+)(M^(+))can be stored at M_(2)Se phase while electrons accumulate at Fe nanoparticles,forming interfacial space charge layers.Magnetic and dynamics tests further demonstrate that with increasing ionic radius from Li^(+),Na^(+)to K^(+),the reaction kinetics can be hindered,resulting in limited Fe formation and reduced space charge storage capacity.This work lays solid foundation for studying the complex interfacial effect in electrochemical processes and designing advanced energy storage devices with substantial capacity and considerable power density.展开更多
Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and...Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.展开更多
基金supported by National Science Foundation of China(52201254)Shandong Province(ZR2020MB090,ZR2020QE012)the project of“20 Items of University”of Jinan(202228046)。
文摘The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.
基金supported by the National Natural Science Foundation of China (Grant No. 51901008)the National Key Research and Development Program of China (Grant No. 2021YFB3201800)。
文摘Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11434006, and 51871112)the National Basic Research Program of China (Grant No. 2015CB921502)+1 种基金the 111 Project (Grant No. B13029)Shandong Provincial Natural Science Foundation (Grant No. ZR2018MA035)
文摘Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, p-d exchange interaction. With this s, p-d exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, p-d interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth.
基金National Natural Science Foundation of China,Grant/Award Number:51804173。
文摘Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due to the complicated and continuous changing in the battery internal environment.Here,we design a novel iron fluoride(FeF_(2))aggregate assembled with cylindrical nanoparticles as cathode material to build FeF_(2) lithium-ion batteries(LIBs)and employ advanced in situ magnetometry to detect their intrinsic electronic structure during cycling in real time.The results show that FeF_(2) cannot be involved in complete conversion reactions when the FeF_(2) LIBs operate between the conventional voltage range of 1.0–4.0 V,and that the corresponding conversion ratio of FeF_(2) can be further estimated.Importantly,we first demonstrate that the spin-polarized surface capacitance exists in the FeF_(2) cathode by monitoring the magnetic responses over various voltage ranges.The research presents an original and insightful method to examine the conversion mechanism of TMFs and significantly provides an important reference for the future artificial design of energy systems based on spinpolarized surface capacitance.
基金This work was supported by the National Natural Science Foundation of China under grant No. 50102019 and 50572053New Century Fund for Outstanding Scholars (Grant No. 040634).
文摘2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivities were used to fabricate the ZnO-based semiconductor spin valve. Since the CoZnO ferromagnetic semiconductor layers touched the ZnO space layer directly, the significant spin injection from CoZnO into ZnO was observed by measuring the magnetoresistance of the spin-injection devices. The magnetoresistance reduced linearly with increasing temperature, from 1.12% at 90 K to 0.35% at room temperature.
基金supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project,China(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The magnetization-direction-dependent inverse spin Hall effect(ISHE) has been observed in NiFe film during spin Seebeck measurement in IrMn/NiFe/Cu/yttrium iron garnet(YIG) multilayer structure, where the YIG and NiFe layers act as the spin injector and spin current detector, respectively. By using the NiFe/IrMn exchange bias structure, the magnetization direction of YIG(MYIG) can be rotated with respect to that of NiFe(MNiFe) with a small magnetic field, thus allowing us to observe the magnetization-direction-dependent inverse spin Hall effect voltage in NiFe layer. Compared with the situation that polarization direction of spin current(σs) is perpendicular to MNiFe, the spin Seebeck voltage is about 30% larger than that when σs and MNiFe are parallel to each other. This phenomenon may originate from either or both of stronger interface or bulk scattering to spin current when σs and MNiFe are perpendicular to each other. Our work provides a way to control the voltage induced by ISHE in ferromagnets.
基金supported by the State Key Project of Fundamental Research of China No.2007CB924903 and NSFC No.50572053
文摘[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10).
基金supported by the National Natural Science Foundation of China (Grant No. 52173283)Taishan Scholar Program of Shandong Province (No. ts20190939)+1 种基金the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043)Science and technology program of the University of Jinan (No. XKY1912)。
文摘The Rashba effect and valley polarization provide a novel paradigm in quantum information technology. However,practical materials are scarce. Here, we found a new class of Janus monolayers VXY(X = Cl, Br, I;Y = Se, Te) with excellent valley polarization effect. In particular, Janus VBrSe shows Zeeman type spin splitting of 14 meV, large Berry curvature of 182.73 bohr2,and, at the same time, a large Rashba parameter of 176.89 meV·?. We use the k·p theory to analyze the relationship between the lattice constant and the curvature of the Berry. The Berry curvature can be adjusted by changing the lattice parameter,which will greatly improve the transverse velocities of carriers and promote the efficiency of the valley Hall device. By applying biaxial strain onto VBrSe, we can see that there is a correlation between Berry curvature and lattice constant, which further validates the above theory. All these results provide tantalizing opportunities for efficient spintronics and valleytronics.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB921502)the National Natural Science Foundation of China(Grant Nos.11474184 and 11627805)+1 种基金the 111 Project,China(Grant No.B13029)the Fundamental Research Funds of Shandong University,China
文摘The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in PffYIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents (σsc), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electro-chemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements.
基金supported by the National Natural Science Foundation of China(Grant No.11774200)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019JQ02)the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University。
文摘We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a Lagrangian equation and a Rayleigh dissipation function,we predicted that the resonance linewidth△H as a function of microwave frequencyωis nonlinear for both acoustic and optical modes in the Cr Cl;flake,which is significantly different from the linear relationship of△H-ωin ferromagnets.Measuring the microwave transmission through the Cr Cl;flake,we obtained theω–H dispersion and damping evolution△H–ωfor both acoustic and optical modes.Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution△H–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.
基金supported by the LDRD program at the LBNL and facilitated by a User Program at The Molecular Foundry(TMF)provided by the TMF clusters(managed by the High Performance Computing Services Group,at LBNL)+3 种基金by the National Energy Research Scientific Computing Center(NERSC)supported by the Office of Science of the US DOE under Contract No.DE-AC02-05CH11231support from EERE VTO under the Applied Battery Materials Program of the US DOE with Contract No.DE-AC02-05CH11231supported by the DOE VTO at Argonne National Laboratory
文摘The pre-edges of oxygen-K X-ray absorption spectra have been ubiquitous in transition metal(TM)oxide studies in various fields,especially on the fervent topic of oxygen redox states in battery electrodes.However,critical debates remain on the use of the O-K pre-edge variations upon electrochemical cycling as evidences of oxygen redox reactions,which has been a popular practice in the battery field.This study presents an investigation of the O-K pre-edge of 55 oxides covering all 3d TMs with different elements,structures,and electrochemical states through combined experimental and theoretical analyses.It is shown unambiguously that the O-K pre-edge variation in battery cathodes is dominated by changing TM-d states.Furthermore,the pre-edge enables a unique opportunity to project the lowest unoccupied TM-d states onto one common energy window,leading to a summary map of the relative energy positions of the low-lying TM states,with higher TM oxidation states at lower energies,corresponding to higher electrochemical potentials.The results naturally clarify some unusual redox reactions,such as Cr^(3+/6+).This work provides a critical clarification on O-K pre-edge interpretation and more importantly a benchmark database of O-K pre-edge for characterizing redox reactions in batteries and other energy materials.
基金supported by the National Natural Science Foundation of China(Grant No.12004137)the Taishan Scholar Project of Shandong Province(No.ts20190939)the Natural Science Foundation of Shandong Province(Grant No.ZR2020QA052).
文摘Dual topological insulator(DTI),which simultaneously hosts topological insulator(TI)and topological crystalline insulator(TCI)phases,has attracted extensive attention since it has a better robustness of topological nature and broad application prospects in spintronics.However,the realization of DTI phase in two-dimensional(2D)system is extremely scarce.By first-principles calculations,we predict that the 2D rectangular bismuth(R–Bi)bilayer is a novel DTI,featured by topological invariant=1,mirror Chern number C_(M)=–1,and metallic edge states within the bulk band gap.More interestingly,the TCI phase in bilayer is protected by horizontal glide mirror symmetries,rather than the usual mirror symmetry.The bulk band gap can be effectively tuned by vertical electric field and strain.Besides,the electric field can trigger the transition between TI and metallic phases for the bilayer,accompanied by the annihilation of TCI phase.On this basis,a topological field effect transistor is proposed,which can rapidly manipulate spin and charge carriers via electric field.The KBr(110)surface is demonstrated as an ideal substrate for the deposition of bilayer.These findings provide not only a new strategy for exploiting 2D DTI,but also a promising candidate for spintronic applications.
基金the National Key Research&Development Program of China(No.2021YFB3601504)the National Natural Science Foundation of China(Nos.52072218,12222414,12074416)+2 种基金the Natural Science Foundation of Shandong province(Nos.ZR2022YQ43 and ZR2020ZD28)Heilongjiang Provincial Natural Resources Foundation Joint Guide Project(No.LH2020E098)Peixin Fund of Qilu University of Technology(Shandong Academy of Sciences)(No.2023PY093).
文摘Artificial synapses are electronic devices that simulate important functions of biological synapses,and therefore are the basic components of artificial neural morphological networks for brain-like computing.One of the most important objectives for developing artificial synapses is to simulate the characteristics of biological synapses as much as possible,especially their self-adaptive ability to external stimuli.Here,we have successfully developed an artificial synapse with multiple synaptic functions and highly adaptive characteristics based on a simple SrTiO_(3)/Nb:SrTiO_(3)heterojunction type memristor.Diverse functions of synaptic learning,such as short-term/long-term plasticity(STP/LTP),transition from STP to LTP,learning–forgetting–relearning behaviors,associative learning and dynamic filtering,are all bio-realistically implemented in a single device.The remarkable synaptic performance is attributed to the fascinating inherent dynamics of oxygen vacancy drift and diffusion,which give rise to the coexistence of volatile-and nonvolatile-type resistive switching.This work reports a multi-functional synaptic emulator with advanced computing capability based on a simple heterostructure,showing great application potential for a compact and low-power neuromorphic computing system.
基金supported by the National Key Research and Development Program of China(Nos.2016YFB0701002and 2016YFB1102301)the National Natural Science Foundation of China(NSFC)(Nos.51772173,51632004,51472257,and 51872307)
文摘Praseodymium-ion-doped gain materials have the superiority of lasing at various visible wavelengths directly.Simple and compact visible lasers are booming with the development of blue laser diodes in recent years.In this Letter, we demonstrate the watt-level red laser with a single blue laser diode and Pr:YLiF4 crystal.On this basis,the passively Q-switched pulse lasers are obtained with monolayer graphene and Co:ZnO thin film as the Q-switchers in the visible range.
基金supported by the National Natural Science Foundation of China(51772133)the Natural Science Foundation of Shandong Province(ZR2017JL022)+1 种基金the project of“20 Items of University”of Jinan(2018GXRC001)the Case-by-Case Project for Top Outstanding Talents of Jinan。
文摘Efficient and economical electrocatalysts should be developed for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)to split water for an extensive application prospect of green and clean hydrogen energy.Here,we develop highly efficient OER and HER electrocatalysts through the scalable fabrication of Ni Fe Zn hydroxide nanosheets firmly arrayed on a hierarchical porous intermetallic Ni Zn and Ni heterojunction over nickel foam(Ni Fe Zn-OH/Ni Zn-Ni/NF).One bimodal porous Ni Zn intermetallic/Ni layer is in situ constructed on the nickel foam surface to maximize the exposure of catalytic sites and build firm Ni Fe Zn-OH nanosheets via the redox reaction with Fe Cl;.Ni Fe Zn-OH/Ni Zn-Ni/NF shows low overpotentials of?50/600 around 235/284 m V for OER and?50/600 around73/212 m V for HER,small Tafel slopes of 46.1 and41.1 m V dec^(-1),and prolonged catalytic durability in an alkaline medium because of the strong synergistic effects of Zn doping,multiple interface engineering,and integral threedimensional free-standing scaffold.As bifunctional catalysts,Ni Fe Zn-OH/Ni Zn-Ni/NF required a low electrolytic voltage of1.49 V at 20 m A cm^(-2)(1.61 V at 100 m A cm^(-2))with a sustained and stable output for 40 h during water splitting.This work might provide insights into the exploration of low-cost and highly efficient intermetallic/multimetallic hydroxide heterostructured electrocatalysts for practical overall water splitting.
基金financial support from the National Natural Science Foundation of China(No.12074149)support from the Natural Science Foundation of Shandong Province(No.ZR2020QA057)+4 种基金support from the National Natural Science Foundation of China(No.51871112)the Major Basic Research Projects of Shandong Province(No.ZR2020ZD28)the 111 Project(No.B13029)support from the Taishan Scholar Project of Shandong Province(No.ts20190939)the Independent Cultivation Program of Innovation Team of Ji’nan City(No.2021GXRC043)。
文摘To achieve a flexible single-crystal multifunctional membrane,the freestanding process of a rigid epitaxial transition metal oxide thin film via a buffered water-dissolution sacrificial layer has attracted reasonable attentions.Owing to the difference in chemical potential,specific element affinity,and lattice constant between the target membrane and the sacrificial layer,the freestanding process may cause an indelible change of physics property once the target thin film is sensitive to the above factors.Here,the heterostructures composed of the generally adopted sacrificial layer Sr_(3)Al_(2)O_(6)(SAO)and LaMnO_(3)(LMO)have been systematically investigated.The electrical and magnetic properties of LMO show extreme sensitivity to the thickness of SAO(tSAO).Then we have also found that LMO/SAO heterostructures can exhibit the coexistence of two ferromagnetic phases,the significantly enhanced Curie temperature~342 K,and the large magnetoresistance-23.3%at 300 K,which is similar to the optimal-doped manganite such as La_(2/3)Sr_(1/3)MnO_(3).X-ray diffraction results show that continuously tunable strain from out-of-plane tension to relaxation and then to compression can be generated by adjusting tSAO.This strain can stabilize the migrated oxygen from LMO to SAO,which is induced by the large oxygen affinity difference between Bsite Mn and Al.It is believed that these unexpected electrical/magnetic phenomena are originated from the combined effects of interfacial element diffusion and strain.Our study provides a strategy for designing new magnetic phases,and a reference for the fundamental understanding of strongly correlated transition metal oxide systems in the freestanding process.
基金supported by the National Natural Science Foundation of China(22179066,51804173,and 11674186)the National Science Foundation of Shandong Province(ZR2020MA073)+2 种基金the Science and Technology Board of Qingdao(16-5-1-2jch)Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery grant RGPIN-04178the Canada First Research Excellence Fund。
文摘Interfacial space charge storage between ionic and electronic conductor is a promising scheme to further improve energy and power density of alkali metal ion batteries(AMIBs).However,the general behavior of space charge storage in AMIBs has been less investigated experimentally,mostly due to the complicated electrochemical behavior and lack of proper characterization techniques.Here,we use operando magnetometry to verify that in FeSe_(2)AMIBs,abundant Li^(+)/Na^(+)/K^(+)(M^(+))can be stored at M_(2)Se phase while electrons accumulate at Fe nanoparticles,forming interfacial space charge layers.Magnetic and dynamics tests further demonstrate that with increasing ionic radius from Li^(+),Na^(+)to K^(+),the reaction kinetics can be hindered,resulting in limited Fe formation and reduced space charge storage capacity.This work lays solid foundation for studying the complex interfacial effect in electrochemical processes and designing advanced energy storage devices with substantial capacity and considerable power density.
基金supported by the National Natural Science Foundation of China (11434006, 11774199, and 51871112)the National Basic Research Program of China (2015CB921502)+1 种基金the 111 Project B13029supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515。
文摘Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.