Leaf,spike,stem,and root morphologies are key factors that determine crop growth,development,and productivity.Multiple genes that control these morphological traits have been identified in Arabidopsis,rice,maize,and o...Leaf,spike,stem,and root morphologies are key factors that determine crop growth,development,and productivity.Multiple genes that control these morphological traits have been identified in Arabidopsis,rice,maize,and other plant species.However,little is known about the genomic regions and genes associated with morphological traits in wheat.Here,we identified the ethyl methanesulfonate-derived mutant wheat line M133 that displays multiple morphological changes that include upward-curled leaves,paired spikelets,dwarfism,and delayed heading.Using bulked segregant RNA sequencing(BSR-seq)and a high-resolution genetic map,we identified TraesCS1D02G155200(HBD2)as a potential candidate gene.HB-D2 encodes a class III homeodomain-leucine zipper(HD-ZIP III)transcription factor,and the mutation was located in the miRNA165/166 complementary site,resulting in a resistant allele designated rHb-D2.The relative expression of rHb2 in the mutant plants was significantly higher(P<0.01)than in plants homozygous for the WT allele.Independent resistant mutations that disrupt the miRNA165/166 complementary sites in the A-(rHb-A2)and B-genome(rHb-B2)homoeologs showed similar phenotypic alterations,but the relative intensity of the effects was different.Transgenic plants expressing rHb-D2 gene driven by the maize UBIQUITIN(UBI)promoter showed similar phenotypes to the rHb-D2 mutant.These results confirmed that HB-D2 is the causal gene responsible for the mutant phenotypes.Finally,a survey of 1397 wheat accessions showed that the complementary sites for miRNA165/166 in all three HB2 homoeologs are highly conserved.Our results suggest that HB2 plays an important role in regulating growth and development in wheat.展开更多
Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is...Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is the best strategy for controlling the disease.In this study,we performed fine mapping and characterization of the all-stage stem rust resistance(Sr)gene Sr8155B1 from the durum wheat line 8155-B1.In seedling tests of biparental populations,Sr8155B1 was effective against six Chinese Pgt races tested.In a segregating population of 5060 gametes,Sr8155B1 was mapped to a 0.06-cM region flanked by markers Pku2772 and Pku43365,corresponding to 1.5-and 2.7-Mb regions in the Svevo and Chinese Spring reference genomes.Both regions include several typical nucleotide-binding leucine-rich repeat(NLR)and protein kinase genes that represent candidate genes.Among them,three NLR genes and three receptor-like protein kinases were highly polymorphic between the parental lines and their transcripts were upregulated in the homozygous resistant line TdR2 relative to its susceptible sister line TdS4.Four markers(Pku2772,Pku43365,Pku2950,and Pku3721)developed in this study,together with seedling resistance responses,correctly predicted Sr8155B1 absence or presence in 78 tetraploid wheat genotypes tested.The presence of Sr8155B1 in tetraploid wheat accessions CItr 14916,PI 197492,and PI 197493 was confirmed by mapping in three F_(2)populations.The genetic map and linked markers developed in this study may accelerate the deployment of Sr8155B1-mediated resistance in wheat breeding programs.展开更多
In this study,we investigated the functional role of eukaryotic initiation factor 5B(EIF5B)in hepatocellular carcinoma(HCC)and the underlying mechanisms.Bioinformatics analysis demonstrated that the EIF5B transcript a...In this study,we investigated the functional role of eukaryotic initiation factor 5B(EIF5B)in hepatocellular carcinoma(HCC)and the underlying mechanisms.Bioinformatics analysis demonstrated that the EIF5B transcript and protein levels as well as the EIF5Bcopy number were significantly higher in the HCC tissues compared with the non-cancerous liver tissues.Down-regulation of EIF5B significantly decreased proliferation and invasiveness of the HCC cells.Furthermore,EIF5B knockdown suppressed epithelial-mesenchymal transition(EMT)and the cancer stem cell(CSC)phenotype.Down-regulation of EIF5B also increased the sensitivity of HCC cells to 5-fluorouracil(5-FU).In the HCC cells,activation of the NF-kappa B signaling pathway and IkB phosphorylation was significantly reduced by EIF5B silencing.IGF2BP3 increased the stability of the EIF5B mRNA in an m6A-dependent manner.Our data suggested that EIF5B is a promising prognostic biomarker and therapeutic target in HCC.展开更多
Dear Editor,Bread wheat(Triticum aestivum L.)is a globally important cereal providing~20% of the calories and proteins for>4.5billion people.Plant architecture,including morphologies of leaves,spikes,stems,and root...Dear Editor,Bread wheat(Triticum aestivum L.)is a globally important cereal providing~20% of the calories and proteins for>4.5billion people.Plant architecture,including morphologies of leaves,spikes,stems,and roots,has great impact on plant development and productivity,and thus has been extensively investigated in various plant species(Jiang et al.,2023;Zhang et al.,2017).展开更多
Dear Editor,Triticum monococcum subsp.monococcum(2n=2x=14,AmAm),commonly known as einkorn wheat,is one of the oldest cereal crops and was domesticated in southeastern Turkey about 12000 years ago(Heun et al.,1997).Thi...Dear Editor,Triticum monococcum subsp.monococcum(2n=2x=14,AmAm),commonly known as einkorn wheat,is one of the oldest cereal crops and was domesticated in southeastern Turkey about 12000 years ago(Heun et al.,1997).This species played a significant role in the development of agriculture and was widely cultivated for centuries in the Middle East,Europe,Central Asia,and Africa before being replaced by free-threshing polyploid wheats.Triticum monococcum is closely related to T.urartu(genome Au Au),the donor of the A genome in durum and bread wheat(Dvorak et al.,1988).展开更多
Recently,rapid advances in flexible strain sensors have broadened their application scenario in monitoring of various mechanophysiological signals.Among various strain sensors,the crack-based strain sensors have drawn...Recently,rapid advances in flexible strain sensors have broadened their application scenario in monitoring of various mechanophysiological signals.Among various strain sensors,the crack-based strain sensors have drawn increasing attention in monitoring subtle mechanical deformation due to their high sensitivity.However,early generation and rapid propagation of cracks in the conductive sensing layer result in a narrow working range,limiting their application in monitoring large biomechanical signals.Herein,we developed a stress-deconcentrated ultrasensitive strain(SDUS)sensor with ultrahigh sensitivity(gauge factor up to2.3×10^(6))and a wide working range(0%-50%)via incorporating notch-insensitive elastic substrate and microcrack-tunable conductive layer.Furthermore,the highly elastic amine-based polymer-modified polydimethylsiloxane substrate without obvious hysteresis endows our SDUS sensor with a rapid response time(2.33 ms)to external stimuli.The accurate detection of the radial pulse,joint motion,and vocal cord vibration proves the capability of SDUS sensor for healthcare monitoring and human-machine communications.展开更多
Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields.Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust,a devastating disease of wheat(Triticum ...Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields.Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust,a devastating disease of wheat(Triticum aestivum)caused by Puccinia striiformis f.sp.tritici(Pst).We found that suppression of wheat zeaxanthin epoxidase 1(ZEP1)increased wheat defense against Pst.We isolated the yellow rust slower 1(yrs1)mutant of tetraploid wheat in which a premature stop mutation in ZEP1-B underpins the phenotype.Genetic analyses revealed increased H_(2)O_(2) accumulation in zep1 mutants and demonstrated a correlation between ZEP1 dysfunction and slower Pst growth in wheat.Moreover,wheat kinase START 1.1(WKS1.1,Yr36)bound,phosphorylated,and suppressed the biochemical activity of ZEP1.A rare natural allele in the hexaploid wheat ZEP1-B promoter reduced its transcription and Pst growth.Our study thus identified a novel suppressor of Pst,characterized its mechanism of action,and revealed beneficial variants for wheat disease control.This work opens the door to stacking wheat ZEP1 variants with other known Pst resistance genes in future breeding programs to enhance wheat tolerance to pathogens.展开更多
Blood deficiency syndrome(BDS)refers to a pathological state with blood dysfunction and organ dystrophy in traditional Chinese medicine.Danggui Wuji granules(DWG)was developed from a formula containing Angelicae Sinen...Blood deficiency syndrome(BDS)refers to a pathological state with blood dysfunction and organ dystrophy in traditional Chinese medicine.Danggui Wuji granules(DWG)was developed from a formula containing Angelicae Sinensis Radix and Musculus et Os Galli Domestici.Herein,we investigated the mechanism of DWG in treating BDS by modulating gut microbiota.We found that DWG protected mice from BDS by elevating the levels of red blood cell count,hemoglobin,and hematocrit in peripheral blood and increasing the erythrocyte membrane Na+-K+-ATPase activity.Danggui Wuji granules changed the composition and metabolites of colonic flora.Notably,Lactobacillus,Muribaculaceae,and Alistipes were the main genera showing changes after DWG treatment.Our findings revealed that DWG presented a positive therapeutic effect on BDS in mice by regulating the gut microbiota and metabolites.The protective mechanism of DWG was associated with pathways such as metabolic pathways,biosynthesis of secondary metabolites,ABC transporters,ribosome,thyroid hormone synthesis,lysine degradation,galactose metabolism,tyrosine metabolism,etc.展开更多
基金supported by the Provincial Natural Science Foundation of Shandong(ZR2021MC056 and ZR2021ZD30)the Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvementfunded by Competitive Grant 202268013-36439(WheatCAP)from the USDA National Institute of Food and Agriculture。
文摘Leaf,spike,stem,and root morphologies are key factors that determine crop growth,development,and productivity.Multiple genes that control these morphological traits have been identified in Arabidopsis,rice,maize,and other plant species.However,little is known about the genomic regions and genes associated with morphological traits in wheat.Here,we identified the ethyl methanesulfonate-derived mutant wheat line M133 that displays multiple morphological changes that include upward-curled leaves,paired spikelets,dwarfism,and delayed heading.Using bulked segregant RNA sequencing(BSR-seq)and a high-resolution genetic map,we identified TraesCS1D02G155200(HBD2)as a potential candidate gene.HB-D2 encodes a class III homeodomain-leucine zipper(HD-ZIP III)transcription factor,and the mutation was located in the miRNA165/166 complementary site,resulting in a resistant allele designated rHb-D2.The relative expression of rHb2 in the mutant plants was significantly higher(P<0.01)than in plants homozygous for the WT allele.Independent resistant mutations that disrupt the miRNA165/166 complementary sites in the A-(rHb-A2)and B-genome(rHb-B2)homoeologs showed similar phenotypic alterations,but the relative intensity of the effects was different.Transgenic plants expressing rHb-D2 gene driven by the maize UBIQUITIN(UBI)promoter showed similar phenotypes to the rHb-D2 mutant.These results confirmed that HB-D2 is the causal gene responsible for the mutant phenotypes.Finally,a survey of 1397 wheat accessions showed that the complementary sites for miRNA165/166 in all three HB2 homoeologs are highly conserved.Our results suggest that HB2 plays an important role in regulating growth and development in wheat.
基金the National Key Research and Development Program of China(2022YFD1201300)the Key R&D Program of Shandong Province(ZR202211070163)+1 种基金the Provincial Natural Science Foundation of Shandong(ZR2021ZD30,ZR2021MC056)the Young Taishan Scholars Program of Shandong Province.
文摘Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is the best strategy for controlling the disease.In this study,we performed fine mapping and characterization of the all-stage stem rust resistance(Sr)gene Sr8155B1 from the durum wheat line 8155-B1.In seedling tests of biparental populations,Sr8155B1 was effective against six Chinese Pgt races tested.In a segregating population of 5060 gametes,Sr8155B1 was mapped to a 0.06-cM region flanked by markers Pku2772 and Pku43365,corresponding to 1.5-and 2.7-Mb regions in the Svevo and Chinese Spring reference genomes.Both regions include several typical nucleotide-binding leucine-rich repeat(NLR)and protein kinase genes that represent candidate genes.Among them,three NLR genes and three receptor-like protein kinases were highly polymorphic between the parental lines and their transcripts were upregulated in the homozygous resistant line TdR2 relative to its susceptible sister line TdS4.Four markers(Pku2772,Pku43365,Pku2950,and Pku3721)developed in this study,together with seedling resistance responses,correctly predicted Sr8155B1 absence or presence in 78 tetraploid wheat genotypes tested.The presence of Sr8155B1 in tetraploid wheat accessions CItr 14916,PI 197492,and PI 197493 was confirmed by mapping in three F_(2)populations.The genetic map and linked markers developed in this study may accelerate the deployment of Sr8155B1-mediated resistance in wheat breeding programs.
基金supported by National Natural Science Foundation of China(No.81773167)Project of Traditional Chinese Medicine of Guangdong Administration(No.20132155)Medical and Health Science and Technology Project of Guangzhou Baiyun District(No.2020-YL-002).
文摘In this study,we investigated the functional role of eukaryotic initiation factor 5B(EIF5B)in hepatocellular carcinoma(HCC)and the underlying mechanisms.Bioinformatics analysis demonstrated that the EIF5B transcript and protein levels as well as the EIF5Bcopy number were significantly higher in the HCC tissues compared with the non-cancerous liver tissues.Down-regulation of EIF5B significantly decreased proliferation and invasiveness of the HCC cells.Furthermore,EIF5B knockdown suppressed epithelial-mesenchymal transition(EMT)and the cancer stem cell(CSC)phenotype.Down-regulation of EIF5B also increased the sensitivity of HCC cells to 5-fluorouracil(5-FU).In the HCC cells,activation of the NF-kappa B signaling pathway and IkB phosphorylation was significantly reduced by EIF5B silencing.IGF2BP3 increased the stability of the EIF5B mRNA in an m6A-dependent manner.Our data suggested that EIF5B is a promising prognostic biomarker and therapeutic target in HCC.
基金supported by the Key R&D Program of Shandong Province(ZR202211070163,2023LZGC022)the Provincial Natural Science Foundation of Shandong(ZR2021MC056,ZR2021ZD30)+1 种基金the National Key Research and Development Program of China(2022YFD1201300)the Young Taishan Scholars Program of Shandong Province。
文摘Dear Editor,Bread wheat(Triticum aestivum L.)is a globally important cereal providing~20% of the calories and proteins for>4.5billion people.Plant architecture,including morphologies of leaves,spikes,stems,and roots,has great impact on plant development and productivity,and thus has been extensively investigated in various plant species(Jiang et al.,2023;Zhang et al.,2017).
基金supported by the Key R&D Program of Shandong Province (ZR202211070163)the National Key Research and Development Program of China (2022YFD1201300)+2 种基金the Provincial Natural Science Foundation of Shandong (ZR2021MC056 and ZR2021ZD30)the National Natural Science Foundation of China (31970317)supported by the Young Taishan Scholars Program of Shandong Province.
文摘Dear Editor,Triticum monococcum subsp.monococcum(2n=2x=14,AmAm),commonly known as einkorn wheat,is one of the oldest cereal crops and was domesticated in southeastern Turkey about 12000 years ago(Heun et al.,1997).This species played a significant role in the development of agriculture and was widely cultivated for centuries in the Middle East,Europe,Central Asia,and Africa before being replaced by free-threshing polyploid wheats.Triticum monococcum is closely related to T.urartu(genome Au Au),the donor of the A genome in durum and bread wheat(Dvorak et al.,1988).
基金supported by the National Key Research and Development Program of China(2019YFA0210104)the National Natural Science Foundation of China(81971701)the Natural Science Foundation of Jiangsu Province(BK20201352)。
文摘Recently,rapid advances in flexible strain sensors have broadened their application scenario in monitoring of various mechanophysiological signals.Among various strain sensors,the crack-based strain sensors have drawn increasing attention in monitoring subtle mechanical deformation due to their high sensitivity.However,early generation and rapid propagation of cracks in the conductive sensing layer result in a narrow working range,limiting their application in monitoring large biomechanical signals.Herein,we developed a stress-deconcentrated ultrasensitive strain(SDUS)sensor with ultrahigh sensitivity(gauge factor up to2.3×10^(6))and a wide working range(0%-50%)via incorporating notch-insensitive elastic substrate and microcrack-tunable conductive layer.Furthermore,the highly elastic amine-based polymer-modified polydimethylsiloxane substrate without obvious hysteresis endows our SDUS sensor with a rapid response time(2.33 ms)to external stimuli.The accurate detection of the radial pulse,joint motion,and vocal cord vibration proves the capability of SDUS sensor for healthcare monitoring and human-machine communications.
基金supported by the National Key Research and Development Program(2022YFF1001501)the National Natural Science Foundation of China(31972350)+1 种基金the Chinese Universities Scientific Fund(2022TC174)the financial support from an open project of the State Key Laboratory of Crop Stress Adaptation and Improvement in Henan University.
文摘Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields.Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust,a devastating disease of wheat(Triticum aestivum)caused by Puccinia striiformis f.sp.tritici(Pst).We found that suppression of wheat zeaxanthin epoxidase 1(ZEP1)increased wheat defense against Pst.We isolated the yellow rust slower 1(yrs1)mutant of tetraploid wheat in which a premature stop mutation in ZEP1-B underpins the phenotype.Genetic analyses revealed increased H_(2)O_(2) accumulation in zep1 mutants and demonstrated a correlation between ZEP1 dysfunction and slower Pst growth in wheat.Moreover,wheat kinase START 1.1(WKS1.1,Yr36)bound,phosphorylated,and suppressed the biochemical activity of ZEP1.A rare natural allele in the hexaploid wheat ZEP1-B promoter reduced its transcription and Pst growth.Our study thus identified a novel suppressor of Pst,characterized its mechanism of action,and revealed beneficial variants for wheat disease control.This work opens the door to stacking wheat ZEP1 variants with other known Pst resistance genes in future breeding programs to enhance wheat tolerance to pathogens.
基金This work was supported by National Research and Development Project of China(grant no.2023YFF0724803)Scientific and technological innovation project of China Academy of Chinese Medical Sciences(grant no.CI2021B015)The Fundamental Research Funds for the Central Public Welfare Research Institutes(grant no.ZZ15-WT-04,ZZ15-WT-08).
文摘Blood deficiency syndrome(BDS)refers to a pathological state with blood dysfunction and organ dystrophy in traditional Chinese medicine.Danggui Wuji granules(DWG)was developed from a formula containing Angelicae Sinensis Radix and Musculus et Os Galli Domestici.Herein,we investigated the mechanism of DWG in treating BDS by modulating gut microbiota.We found that DWG protected mice from BDS by elevating the levels of red blood cell count,hemoglobin,and hematocrit in peripheral blood and increasing the erythrocyte membrane Na+-K+-ATPase activity.Danggui Wuji granules changed the composition and metabolites of colonic flora.Notably,Lactobacillus,Muribaculaceae,and Alistipes were the main genera showing changes after DWG treatment.Our findings revealed that DWG presented a positive therapeutic effect on BDS in mice by regulating the gut microbiota and metabolites.The protective mechanism of DWG was associated with pathways such as metabolic pathways,biosynthesis of secondary metabolites,ABC transporters,ribosome,thyroid hormone synthesis,lysine degradation,galactose metabolism,tyrosine metabolism,etc.