Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportation...Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.展开更多
Cab signaling apparatus is the critical equipment for ground-vehicle communication in electrified railways.With the rapid development of high-speed and heavy-haul railways,the immunity to unbalanced traction current i...Cab signaling apparatus is the critical equipment for ground-vehicle communication in electrified railways.With the rapid development of high-speed and heavy-haul railways,the immunity to unbalanced traction current interference for cab signaling apparatus in the onboard train control system is increasingly demanded.This paper analyzes the interference coupling mechanism of the ZPW-2000 track circuit.Based on electromagnetic field theory and the actual working parameters,a calculation model is established to complete the quantitative research of the cab signal induction process and traction current interference.Then,a finite element model is built to simulate the process.The simulation results under the signal frequency,fundamental and harmonic interference are all consistent with the theoretical calculation results.The practical measurement data verify the coupling relationship between cab signal inductive voltage and rail current.Finally,an indirect immunity test method applying this relation for the cab signals is proposed,and the voltage indexes of the disturbance sources are determined,i.e.,the test limits.The results provide an accurate quantitative basis for the cab signaling research and design of the immunity test platform;besides,the proposed indirect test method can simplify the test configuration and improve test efficiency.展开更多
基金funded by the National Railway Administration of the People’s Republic of China(No:N2023G001)Shaanxi Luyide Railroad and Bridge Technology Co.,Ltd.(No:W22L00520).
文摘Purpose – In the continuous development of high-speed railways, ensuring the safety of the operation controlsystem is crucial. Electromagnetic interference (EMI) faults in signaling equipment may cause transportationinterruptions, delays and even threaten the safety of train operations. Exploring the impact of disturbances onsignaling equipment and establishing evaluation methods for the correlation between EMI and safety isurgently needed.Design/methodology/approach – This paper elaborates on the necessity and significance of studying theimpact of EMI as an unavoidable and widespread risk factor in the external environment of high-speed railwayoperations and continuous development. The current status of research methods and achievements from theperspectives of standard systems, reliability analysis and safety assessment are examined layer by layer.Additionally, it provides prospects for innovative ideas for exploring the quantitative correlation between EMIand signaling safety.Findings – Despite certain innovative achievements in both domestic and international standard systems andrelated research for ensuring and evaluating railway signaling safety, there’s a lack of quantitative and strategic research on the degradation of safety performance in signaling equipment due to EMI. A quantitativecorrelation between EMI and safety has yet to be established. On this basis, this paper proposes considerationsfor research methods pertaining to the correlation between EMI and safety.Originality/value – This paper overviews a series of methods and outcomes derived from domestic andinternational studies regarding railway signaling safety, encompassing standard systems, reliability analysisand safety assessment. Recognizing the necessity for quantitatively describing and predicting the impact ofEMI on high-speed railway signaling safety, an innovative approach using risk assessment techniques as abridge to establish the correlation between EMI and signaling safety is proposed.
基金This work was supported in part by the China Railway(Grant No.17CR062)Shenzhen Changlong Railway Electronic Engineering Co.,Ltd.(Project Name:Anti-interference Design and Verification Improvement of Cab Signaling Onboard System Apparatus).
文摘Cab signaling apparatus is the critical equipment for ground-vehicle communication in electrified railways.With the rapid development of high-speed and heavy-haul railways,the immunity to unbalanced traction current interference for cab signaling apparatus in the onboard train control system is increasingly demanded.This paper analyzes the interference coupling mechanism of the ZPW-2000 track circuit.Based on electromagnetic field theory and the actual working parameters,a calculation model is established to complete the quantitative research of the cab signal induction process and traction current interference.Then,a finite element model is built to simulate the process.The simulation results under the signal frequency,fundamental and harmonic interference are all consistent with the theoretical calculation results.The practical measurement data verify the coupling relationship between cab signal inductive voltage and rail current.Finally,an indirect immunity test method applying this relation for the cab signals is proposed,and the voltage indexes of the disturbance sources are determined,i.e.,the test limits.The results provide an accurate quantitative basis for the cab signaling research and design of the immunity test platform;besides,the proposed indirect test method can simplify the test configuration and improve test efficiency.