期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
HD-Zip Transcription Factor is Responsible for No-Lobed Leaf in Watermelon(Citrullus lanatus L.) 被引量:1
1
作者 shixiang duan Yaomiao Guo +8 位作者 Yinping Wang Muhammad Jawad Umer Dongming Liu Sen Yang Huanhuan Niu Shouru Sun Luming Yang Junling Dou Huayu Zhu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第5期1311-1328,共18页
Leaf is a vital organ of plants that plays an essential role in photosynthesis and respiration.As an important agronomic trait in leaf development,leaf shape is classified into lobed,entire(no-lobed),and serrated in m... Leaf is a vital organ of plants that plays an essential role in photosynthesis and respiration.As an important agronomic trait in leaf development,leaf shape is classified into lobed,entire(no-lobed),and serrated in most crops.In this study,two-lobed leaf watermelon inbred lines WT2 and WCZ,and a no-lobed leaf watermelon inbred line WT20 were used to create two F_(2)populations.Segregation analysis suggested that lobed leaves were dominant over the no-lobed leaves,and it was controlled by a signal gene.A locus on watermelon chromosome 4 controlling watermelon lobed/no-lobed leaves was identified through BSA-seq strategy combined with linkage analysis.The candidate gene was fine-mapped to a 61.5 kb region between 21,224,481 and 21,285,957 bp on watermelon chromosome 4 using two F_(2)populations.Four functional genes were annotated in the candidate region,while sequences blast showed that there was a single-base deletion(A/-)only in the exon of Cla018360,which resulted in premature termination of translation in the no-lobed leaf lines.Function prediction showed that Cla018360 encodes an HD-Zip protein that has been reported to regulate the development of leaf shape.The single-base deletion also occurred in the HD-Zip domain.We inferred that the Cla018360 gene is the candidate gene for regulating the development of lobed/no-lobed leaves in watermelon.Gene expression analysis showed that Cla018360 was highly expressed in young leaves.Phylogenetic analysis showed that Cla018360 had a close genetic relationship with AtHB51,which had been reported to regulate the formation of leaf shape in Arabidopsis.Furthermore,transcriptome analysis showed that a total of 333 differentially expressed genes were identified between WT2 and WT20,of which 115 and 218 genes were upregulated and downregulated in no-lobed leaved watermelon WT20.This study not only provides a good entry point for studying leaf development but also provides foundational insights into breeding for special plant architecture in watermelon. 展开更多
关键词 WATERMELON lobed/no-lobed leaf mapping RNA-SEQ
下载PDF
MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid 被引量:9
2
作者 Sujuan Zhang shixiang duan +5 位作者 Gaoli Chen Sugang Meng Xiuzhen Zheng You Fan Xianliang Fu Shifu Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期193-204,共12页
Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalys... Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results. 展开更多
关键词 Hydrogen production Zn3In2S6 Formic acid MOS2 PHOTOCATALYSIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部