Leaf is a vital organ of plants that plays an essential role in photosynthesis and respiration.As an important agronomic trait in leaf development,leaf shape is classified into lobed,entire(no-lobed),and serrated in m...Leaf is a vital organ of plants that plays an essential role in photosynthesis and respiration.As an important agronomic trait in leaf development,leaf shape is classified into lobed,entire(no-lobed),and serrated in most crops.In this study,two-lobed leaf watermelon inbred lines WT2 and WCZ,and a no-lobed leaf watermelon inbred line WT20 were used to create two F_(2)populations.Segregation analysis suggested that lobed leaves were dominant over the no-lobed leaves,and it was controlled by a signal gene.A locus on watermelon chromosome 4 controlling watermelon lobed/no-lobed leaves was identified through BSA-seq strategy combined with linkage analysis.The candidate gene was fine-mapped to a 61.5 kb region between 21,224,481 and 21,285,957 bp on watermelon chromosome 4 using two F_(2)populations.Four functional genes were annotated in the candidate region,while sequences blast showed that there was a single-base deletion(A/-)only in the exon of Cla018360,which resulted in premature termination of translation in the no-lobed leaf lines.Function prediction showed that Cla018360 encodes an HD-Zip protein that has been reported to regulate the development of leaf shape.The single-base deletion also occurred in the HD-Zip domain.We inferred that the Cla018360 gene is the candidate gene for regulating the development of lobed/no-lobed leaves in watermelon.Gene expression analysis showed that Cla018360 was highly expressed in young leaves.Phylogenetic analysis showed that Cla018360 had a close genetic relationship with AtHB51,which had been reported to regulate the formation of leaf shape in Arabidopsis.Furthermore,transcriptome analysis showed that a total of 333 differentially expressed genes were identified between WT2 and WT20,of which 115 and 218 genes were upregulated and downregulated in no-lobed leaved watermelon WT20.This study not only provides a good entry point for studying leaf development but also provides foundational insights into breeding for special plant architecture in watermelon.展开更多
Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalys...Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results.展开更多
基金This research was supported by the National Natural Science Foundation of China(32102389,32172602)the Zhongyuan Youth Talent Support Program(ZYQR201912161)+3 种基金the Program for Science&Technology Innovation Talents in Universities of Henan Province(21HASTIT038)the Funding of Joint Research on Agricultural Varietie Improvement of Henan Province(2022010503)the Major Science and Technology Project of Henan Province(221100110400)the Science and Technology Innovation Fund of Henan Agricultural University(KJCX2021A14).
文摘Leaf is a vital organ of plants that plays an essential role in photosynthesis and respiration.As an important agronomic trait in leaf development,leaf shape is classified into lobed,entire(no-lobed),and serrated in most crops.In this study,two-lobed leaf watermelon inbred lines WT2 and WCZ,and a no-lobed leaf watermelon inbred line WT20 were used to create two F_(2)populations.Segregation analysis suggested that lobed leaves were dominant over the no-lobed leaves,and it was controlled by a signal gene.A locus on watermelon chromosome 4 controlling watermelon lobed/no-lobed leaves was identified through BSA-seq strategy combined with linkage analysis.The candidate gene was fine-mapped to a 61.5 kb region between 21,224,481 and 21,285,957 bp on watermelon chromosome 4 using two F_(2)populations.Four functional genes were annotated in the candidate region,while sequences blast showed that there was a single-base deletion(A/-)only in the exon of Cla018360,which resulted in premature termination of translation in the no-lobed leaf lines.Function prediction showed that Cla018360 encodes an HD-Zip protein that has been reported to regulate the development of leaf shape.The single-base deletion also occurred in the HD-Zip domain.We inferred that the Cla018360 gene is the candidate gene for regulating the development of lobed/no-lobed leaves in watermelon.Gene expression analysis showed that Cla018360 was highly expressed in young leaves.Phylogenetic analysis showed that Cla018360 had a close genetic relationship with AtHB51,which had been reported to regulate the formation of leaf shape in Arabidopsis.Furthermore,transcriptome analysis showed that a total of 333 differentially expressed genes were identified between WT2 and WT20,of which 115 and 218 genes were upregulated and downregulated in no-lobed leaved watermelon WT20.This study not only provides a good entry point for studying leaf development but also provides foundational insights into breeding for special plant architecture in watermelon.
文摘Enhancing the separation efficiency of photogenerated carriers is propitious for the promotion of photocatalytic hydrogen production from formic acid decomposition.Herein,MoS2/Zn3In2S6(MoS2/ZIS6)composite photocatalysts containing varying mass percentages of MoS2 were obtained by a straightforward synthetic method.The results confirmed that MoS2,as a cocatalyst,markedly promoted the photogenerated charge separation efficiency and visible light-driven hydrogen production activity of ZIS6(λ>400 nm).Specifically,the as-prepared 0.5%MoS2/ZIS6 photocatalyst exhibited the highest photocatalytic hydrogen production rate(74.25μmol·h^-1),which was approximately 4.3 times higher than that of ZIS6(17.47μmol·h^-1).The excellent performance of the 0.5%MoS2/ZIS6 photocatalyst may be due to the fact that MoS2 has a low Fermi energy level and can thus enrich photogenerated electrons from ZIS6,and furthermore reduce H+derived from formic acid,to form hydrogen.The structure and morphology of the MoS2/ZIS6 photocatalysts and the reactive species were determined by X-ray diffraction,transmission electron microscopy,and field emission scanning electron microscopy,among others;a plausible mechanistic rationale is discussed based on the results.