期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:3
1
作者 Yongbiao Mu shixiang yu +12 位作者 yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Copper-Catalyzed Hydrogen Production through the Dehydrogenative Coupling of Methanol and Diamine
2
作者 Danyang Cheng shixiang yu +1 位作者 Meng Wang Ding Ma 《Precision Chemistry》 2024年第4期138-142,共5页
A hydrogen storage system was developed via heterogeneous catalysis,employing the dehydrogenative coupling of methanol and N,N′-dimethylethylenediamine to efficiently produce high-purity H_(2).In this process,the Cu/... A hydrogen storage system was developed via heterogeneous catalysis,employing the dehydrogenative coupling of methanol and N,N′-dimethylethylenediamine to efficiently produce high-purity H_(2).In this process,the Cu/ZnO/Al_(2)O_(3) catalyst displayed superior activity in hydrogen production,with Cu+identified as the major active site through comprehensive characterization. 展开更多
关键词 methanol reforming hydrogen release AMINOCARBONYLATION dehydrogenative coupling Cu/ZnO/Al_(2)O_(3)catalyst
原文传递
Selective Hydrogenation of Phenylacetylene by Carbon Monoxide and Water
3
作者 Xuetao Qin Ruiqi Zhang +10 位作者 Ming Xu Yao Xu Lirong Zheng Chengyu Li shixiang yu Jie Yan Jinglin Xie Genghuang Wu Junfeng Rong Meng Wang Ding Ma 《CCS Chemistry》 CSCD 2023年第10期2358-2365,共8页
Catalytic selective hydrogenation of alkynes to the corresponding alkenes is an important process in industrial production.Modulating the selective hydrogenation of alkynes to the alkenes requires ingenuity since alke... Catalytic selective hydrogenation of alkynes to the corresponding alkenes is an important process in industrial production.Modulating the selective hydrogenation of alkynes to the alkenes requires ingenuity since alkenes can easily be converted into the corresponding alkanes under reductive conditions.Applying different reductive reagents to prevent the direct usage of H_(2)can avoid difficulties in hydrogen storage and transportation.Herein,we demonstrate a tandem process to hydrogenate phenylacetylene by CO and H_(2)Oviathecouplingof thelow-temperaturewater-gas shift reaction and selective hydrogenation of phenylacetylene utilizing theα-MoC catalyst.The reductive reagent,CO,not only produces H_(2)from H_(2)O to drive the reaction forward,but it also regulates the selectivity of styrene by preventing further hydrogenation. 展开更多
关键词 water-gas shift reaction selective hydrogenation of phenylacetylene α-MoC catalyst modulating selectivity by CO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部