期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The influence of inter-band rock on rib spalling in longwall panel with large mining height 被引量:1
1
作者 Jiachen Wang Meng Li +3 位作者 Zhaohui Wang Zheng Li Han Zhang shixiong song 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期427-442,共16页
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con... In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed. 展开更多
关键词 Rib spalling Inter-band rock Large mining height Limit analysis Physical model experiment Numerical simulation
下载PDF
Entropy productions in granular materials
2
作者 Qicheng Sun shixiong song +1 位作者 Feng Jin Yimin Jiang 《Theoretical & Applied Mechanics Letters》 2012年第2期10-14,共5页
Granular materials display more abundant dissipation phenomena than ordinary materials. In this paper, a brief energy flow path with irreversible processes is illustrated, where the concept of granular temperature Tg,... Granular materials display more abundant dissipation phenomena than ordinary materials. In this paper, a brief energy flow path with irreversible processes is illustrated, where the concept of granular temperature Tg, initially proposed for dilute systems, is extended to dense systems in order to quantify disordered force chain configurations. Additionally, we develop the concept of conjugate granular entropy sg and its production equation. Our analyses find out that the granular entropy significantly undermined the elastic contact between particles, seriously affecting the transport coefficients in granular materials and creating new transport processes. 展开更多
关键词 granular flow non-equilibrium thermodynamics granular temperature
下载PDF
ANALYSIS OF PARAMETERS IN GRANULAR SOLID HYDRODYNAMICS FOR TRIAXIAL COMPRESSION TESTS 被引量:1
3
作者 shixiong song Qicheng Sun +1 位作者 Feng Jin Chuhan Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第1期15-27,共13页
Granular materials are omnipresent in industries and in nature. For small strains, elastic-plastic and hypoplastic constitutive relations are widely used in engineering practice, but they are not a significant reflect... Granular materials are omnipresent in industries and in nature. For small strains, elastic-plastic and hypoplastic constitutive relations are widely used in engineering practice, but they are not a significant reflection of the underlying physics. Under a unified thermodynamics framework explaining the physics of materials, granular solid hydrodynamics (GSH) was an ex- tension towards describing granular materials, not only solid-like, but also fluid-like behaviors. In this paper, the fundamentals of GSH are briefly treated and then simplified to analyze quasi- static deformations in triaxial compressions. The calculated stress-strain relations and volumetric strain are compared with experimental results. The influences of the major parameters in GSH, especially their cross coupling influences, are analyzed and their physical meanings are further clarified. After parameters were calibrated, the calculated stress values in the characteristic stress state are found to be within 22% of tested values. Meanwhile, the energy dissipation during triaxial compression is analyzed. The above results support and partially quantify GSH. 展开更多
关键词 granular solid hydrodynamics granular materials triaxial compressions non-equilibrium state
原文传递
Application of granular solid hydrodynamics to a well-graded unbound granular material undergoing triaxial tests 被引量:1
4
作者 shixiong song Qicheng SUN +1 位作者 Feng JIN Chuhan ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第1期83-88,共6页
Unbound granular materials(UGMs)are widely used as a base or a subbase in pavement construction.They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materia... Unbound granular materials(UGMs)are widely used as a base or a subbase in pavement construction.They are generally well graded and exhibit a higher peak strength than that of conventional cohesionless granular materials.By using a simplified version of granular solid hydrodynamics(GSH),a set of GSH material constants is determined for a UGM material.The deviatoric stress and volumetric strain caused by triaxial compression are calculated and then compared with experimental data.The results indicate that the GSH theory is able to describe such a special type of granular materials. 展开更多
关键词 granular solid hydrodynamics unbound granular material(UGM) triaxial tests
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部