Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com...Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters.展开更多
TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and th...TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with Ti Cl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.展开更多
Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of ...Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using diff erent counterions.The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol(BA)and 5-hydroxymethylfurfural(HMF)were evaluated.The eff ects of micromorphology,phase structure,and redox state on the catalytic activity of MnO2 nanomaterials were investigated.The results showed that the intrinsic catalytic oxidation activity was mainly infl uenced by the unique anisotropic structure and surface chemical property of MnO2.With one-dimensional and 2D structures exposing highly active surfaces,unique crystal forms,and high oxidation state of Mn,the intrinsic activities for MnO2 catalysts synthesized in pH 1,5,and 10 solutions(denoted as MnO2-pH1,MnO2-pH5,and MnO2-pH10,respectively)were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF.With a moderate aspect ratio,theα+δnanowire of MnO2-pH10 exhibited the highest average oxidation state,most abundant active sites,and the best catalytic oxidation activity.展开更多
Atomic sites co-catalyst (ASC) on photocatalytic materials possesses an attractive prospect to promote charge carrier separation and tune surface reaction kinetics,yet the synthesis of earth-abundant ASC under low tem...Atomic sites co-catalyst (ASC) on photocatalytic materials possesses an attractive prospect to promote charge carrier separation and tune surface reaction kinetics,yet the synthesis of earth-abundant ASC under low temperature remains a great challenge.Here,a novel in-situ NH_(4)^(+)-etched strategy to anchor atomic Mo sites on ZnIn_(2)S_(4)hierarchical nanotubes (HNTs) with abundant mesopores under mild conditions for promoting charge carrier separation and enhancing light multi-reflections is developed for efficient photocatalytic H_(2) evolution.Density functional theory calculations and linear sweep voltammetry demonstrate that the well-defined Mo-S_(2)O_(1) sites with distinctive coordination configuration and electronic property contribute to the enhanced separation of photo-generated charge carriers and reduced Gibbs free energy for H_(2) evolution.Consequently,the well-defined MoSA-ZIS HNTs present an excellent photocatalytic activity with a rate of 29.9μmol h^(-1)(5.98 mmol g^(-1)h^(-1)),which is 7.3 times higher than that of ZnIn_(2)S_(4)nanosheets (NSs),to be among the best ZnIn_(2)S_(4)-based photocatalysts.The present strategy breaks the high-temperature limitation of conventional top-down thermal dissociation/emitting approach for anchoring non-noble metal atomic sites on catalyst support.展开更多
基金partially supported by National Natural Science Foundation of China(No.52377155)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERI-KF2021001)Hebei University of Technology。
文摘Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters.
基金Supported by the National Key R&D Program of China(2018YFB0605700).
文摘TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with Ti Cl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.
基金the National Natural Science Foundation of China(No.21503187)the“Light of West China”Program of the Chinese Academy of Sciences for the financial support.
文摘Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using diff erent counterions.The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol(BA)and 5-hydroxymethylfurfural(HMF)were evaluated.The eff ects of micromorphology,phase structure,and redox state on the catalytic activity of MnO2 nanomaterials were investigated.The results showed that the intrinsic catalytic oxidation activity was mainly infl uenced by the unique anisotropic structure and surface chemical property of MnO2.With one-dimensional and 2D structures exposing highly active surfaces,unique crystal forms,and high oxidation state of Mn,the intrinsic activities for MnO2 catalysts synthesized in pH 1,5,and 10 solutions(denoted as MnO2-pH1,MnO2-pH5,and MnO2-pH10,respectively)were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF.With a moderate aspect ratio,theα+δnanowire of MnO2-pH10 exhibited the highest average oxidation state,most abundant active sites,and the best catalytic oxidation activity.
基金the Beijing Natural Science Foundation(JQ18005)the National Science Fund for Distinguished Young Scholars(52025133)+3 种基金the Tencent Foundation through the XPLORER PRIZEthe National Natural Science Foundation of China(22002003)China Postdoctoral Science Foundation(2019TQ0001,2020M670020)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnic University(NWPU)(SKLSP202004)。
文摘Atomic sites co-catalyst (ASC) on photocatalytic materials possesses an attractive prospect to promote charge carrier separation and tune surface reaction kinetics,yet the synthesis of earth-abundant ASC under low temperature remains a great challenge.Here,a novel in-situ NH_(4)^(+)-etched strategy to anchor atomic Mo sites on ZnIn_(2)S_(4)hierarchical nanotubes (HNTs) with abundant mesopores under mild conditions for promoting charge carrier separation and enhancing light multi-reflections is developed for efficient photocatalytic H_(2) evolution.Density functional theory calculations and linear sweep voltammetry demonstrate that the well-defined Mo-S_(2)O_(1) sites with distinctive coordination configuration and electronic property contribute to the enhanced separation of photo-generated charge carriers and reduced Gibbs free energy for H_(2) evolution.Consequently,the well-defined MoSA-ZIS HNTs present an excellent photocatalytic activity with a rate of 29.9μmol h^(-1)(5.98 mmol g^(-1)h^(-1)),which is 7.3 times higher than that of ZnIn_(2)S_(4)nanosheets (NSs),to be among the best ZnIn_(2)S_(4)-based photocatalysts.The present strategy breaks the high-temperature limitation of conventional top-down thermal dissociation/emitting approach for anchoring non-noble metal atomic sites on catalyst support.