The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
Accurate segmentation of oral surgery-related tissues from cone beam computed tomography(CBCT)images can significantly accelerate treatment planning and improve surgical accuracy.In this paper,we propose a fully autom...Accurate segmentation of oral surgery-related tissues from cone beam computed tomography(CBCT)images can significantly accelerate treatment planning and improve surgical accuracy.In this paper,we propose a fully automated tissue segmentation system for dental implant surgery.Specifically,we propose an image preprocessing method based on data distribution histograms,which can adaptively process CBCT images with different parameters.Based on this,we use the bone segmentation network to obtain the segmentation results of alveolar bone,teeth,and maxillary sinus.We use the tooth and mandibular regions as the ROI regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks.The tooth segmentation results can obtain the order information of the dentition.The corresponding experimental results show that our method can achieve higher segmentation accuracy and efficiency compared to existing methods.Its average Dice scores on the tooth,alveolar bone,maxillary sinus,and mandibular canal segmentation tasks were 96.5%,95.4%,93.6%,and 94.8%,respectively.These results demonstrate that it can accelerate the development of digital dentistry.展开更多
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金supported by National Natural Science Foundation of China(No.81970987).
文摘Accurate segmentation of oral surgery-related tissues from cone beam computed tomography(CBCT)images can significantly accelerate treatment planning and improve surgical accuracy.In this paper,we propose a fully automated tissue segmentation system for dental implant surgery.Specifically,we propose an image preprocessing method based on data distribution histograms,which can adaptively process CBCT images with different parameters.Based on this,we use the bone segmentation network to obtain the segmentation results of alveolar bone,teeth,and maxillary sinus.We use the tooth and mandibular regions as the ROI regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks.The tooth segmentation results can obtain the order information of the dentition.The corresponding experimental results show that our method can achieve higher segmentation accuracy and efficiency compared to existing methods.Its average Dice scores on the tooth,alveolar bone,maxillary sinus,and mandibular canal segmentation tasks were 96.5%,95.4%,93.6%,and 94.8%,respectively.These results demonstrate that it can accelerate the development of digital dentistry.