期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Impacts of high temperature,relative air humidity,and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering
1
作者 Xin Dong Baole Li +8 位作者 Zhenzhen Yan Ling Guan shoubing huang Shujun Li Zhiyun Qi Ling Tang Honglin Tian Zhongjun Fu Hua Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2955-2969,共15页
Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re... Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits. 展开更多
关键词 MAIZE pollen viability silk emergence heat stress relative humidity
下载PDF
The relationships between maize(Zea mays L.)lodging resistance and yield formation depend on dry matter allocation to ear and stem 被引量:1
2
作者 Ping Zhang Shuangcheng Gu +5 位作者 Yuanyuan Wang Chenchen Xu Yating Zhao Xiaoli Liu Pu Wang shoubing huang 《The Crop Journal》 SCIE CSCD 2023年第1期258-268,共11页
Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi... Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs. 展开更多
关键词 CORN LODGING Yield formation Physical traits Dry matter allocation
下载PDF
Influence of plant architecture on maize physiology and yield in the Heilonggang River valley 被引量:14
3
作者 shoubing huang Yingbo Gao +3 位作者 Yebei Li Lina Xu Hongbin Tao Pu Wang 《The Crop Journal》 SCIE CAS CSCD 2017年第1期52-62,共11页
The size and distribution of leaf area determine light interception in a crop canopy and influence overall photosynthesis and yield. Optimized plant architecture renders modern maize hybrids(Zea mays L.) more producti... The size and distribution of leaf area determine light interception in a crop canopy and influence overall photosynthesis and yield. Optimized plant architecture renders modern maize hybrids(Zea mays L.) more productive, owing to their tolerance of high plant densities. To determine physiological and yield response to maize plant architecture, a field experiment was conducted in 2010 and 2011. With the modern maize hybrid ZD958, three plant architectures, namely triangle, diamond and original plants, were included at two plant densities, 60,000 and 90,000 plants ha-1. Triangle and diamond plants were derived from the original plant by spraying the chemical regulator Jindele(active ingredients,ethephon, and cycocel) at different vegetative stages. To assess the effects of plant architecture, a light interception model was developed. Plant height, ear height, leaf size,and leaf orientation of the two regulated plant architectures were significantly reduced or altered compared with those of the original plants. On average across both plant densities and years, the original plants showed higher yield than the triangle and diamond plants,probably because of larger leaf area. The two-year mean grain yield of the original and diamond plants were almost the same at 90,000 plants ha-1(8714 vs. 8798 kg ha-1). The yield increase(up to 5%) of the diamonds plant at high plant densities was a result of increased kernel number per ear, which was likely a consequence of improved plant architecture in the top and middle canopy layers. The optimized light distribution within the canopy can delay leaf senescence, especially for triangle plants. The fraction of incident radiation simulated by the interception model successfully reflected plant architecture traits. Integration of canopy openness is expected to increase the simulation accuracy of the present model. Maize plant architecture with increased tolerance of high densities is probably dependent on the smaller but flatter leaves around the ear. 展开更多
关键词 MAIZE Light interception YIELD Light interception model Leaf senescence
下载PDF
Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility
4
作者 Qian Yao Ping Li +3 位作者 Xin Wang Shuhua Liao Pu Wang shoubing huang 《Plant Communications》 SCIE CSCD 2024年第9期101-115,共15页
Transient heatwaves occurring more frequently as the climate warms,yet their impacts on crop yield are severely underestimated and even overlooked.Heatwaves lasting only a few days or even hours during sensitive stage... Transient heatwaves occurring more frequently as the climate warms,yet their impacts on crop yield are severely underestimated and even overlooked.Heatwaves lasting only a few days or even hours during sensitive stages,such as microgametogenesis and flowering,can significantly reduce crop yield by disrupting plant reproduction.Recent advances in multi-omics and GWAS analysis have shed light on the specific organs(e.g.,pollen,lodicule,style),key metabolic pathways(sugar and reactive oxygen species metabolism,Ca2+homeostasis),and essential genes that are involved in crop responses to transient heatwaves during sensitive stages.This review therefore places particular emphasis on heat-sensitive stages,with pollen development,floret opening,pollination,and fertilization as the central narrative thread.The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed,with a focus on key structures such as the lodicule and tapetum.A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice.The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops. 展开更多
关键词 heat stress floret fertility POLLEN pollen tube growth seed set molecular mechanism
原文传递
From the floret to the canopy:High temperature tolerance during flowering
5
作者 Mayang Liu Yuhan Zhou +9 位作者 Jiaxin Sun Fen Mao Qian Yao Baole Li Yuanyuan Wang Yingbo Gao Xin Dong Shuhua Liao Pu Wang shoubing huang 《Plant Communications》 SCIE CSCD 2023年第6期22-41,共20页
Heat waves induced by climate warming have become common in food-producing regions worldwide,frequently coinciding with high temperature(HT)-sensitive stages of many crops and thus threatening global food security.Und... Heat waves induced by climate warming have become common in food-producing regions worldwide,frequently coinciding with high temperature(HT)-sensitive stages of many crops and thus threatening global food security.Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set.The responses of seed set to HT involve multiple processes in both male and female reproductive organs,but we currently lack an integrated and systematic summary of these responses for the world’s three leading food crops(rice,wheat,and maize).In the present work,we define the critical high temperature thresholds for seed set in rice(37.2℃±0.2℃),wheat(27.3℃±0.5℃),and maize(37.9℃±0.4℃)during flowering.We assess the HT sensitivity of these three cereals from the microspore stage to the lag period,including effects of HT on flowering dynamics,floret growth and development,pollination,and fertilization.Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening,anther dehiscence,pollen shedding number,pollen viability,pistil and stigma function,pollen germination on the stigma,and pollen tube elongation.HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize.Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy.Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress.However,cereal crops themselves also have protective measures under HT stress.Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops,especially rice,can partly protect themselves from heat damage.In maize,husk leaves reduce inner ear temperature by about 5℃compared with outer ear temperature,thereby protecting the later phases of pollen tube growth and fertilization processes.These findings have important implications for accurate modeling,optimized crop management,and breeding of new varieties to cope with HT stress in the most important staple crops. 展开更多
关键词 high temperature seed set floret organs flowering pattern POLLINATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部