In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading m...In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading modification attack(SM-attack) that may disguise the occurrence of an event as that of another event by intruding sensor communication channels. To solve the problem, we introduce non-deterministic supervisors in the paper, which associate to every observed sequence a set of possible control actions offline and choose a control action from the set randomly online to control the system. Specifically, given a bounded Petri net(PN) as the reference formalism and an SMattack, an algorithm that synthesizes a liveness-enforcing nondeterministic supervisor tolerant to the SM-attack is proposed for the first time.展开更多
Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange...Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding.展开更多
Deadlock resolution strategies based on siphon control are widely investigated.Their computational efficiency largely depends on siphon computation.Mixed-integer programming(MIP)can be utilized for the computation of ...Deadlock resolution strategies based on siphon control are widely investigated.Their computational efficiency largely depends on siphon computation.Mixed-integer programming(MIP)can be utilized for the computation of an emptiable siphon in a Petri net(PN).Based on it,deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity.Due to this reason,various MIP methods are proposed for various subclasses of PNs.This work proposes an innovative MIP method to compute an emptiable minimal siphon(EMS)for a subclass of PNs named S^(4)PR.In particular,many particular structural characteristics of EMS in S4 PR are formalized as constraints,which greatly reduces the solution space.Experimental results show that the proposed MIP method has higher computational efficiency.Furthermore,the proposed method allows one to determine the liveness of an ordinary S^(4)PR.展开更多
A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets(PNs).In this paper,we propose an algorithm ...A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets(PNs).In this paper,we propose an algorithm for the enumeration of minimal siphons in PN based on problem decomposition.The proposed algorithm is an improved version of the global partitioning minimal-siphon enumeration(GPMSE)proposed by Cordone et al.(2005)in IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,which is widely used in the literature to compute minimal siphons.The experimental results show that the proposed algorithm consumes lower computational time and memory compared with GPMSE,which becomes more evident when the size of the handled net grows.展开更多
基金supported in part by the Public Technology Research Plan of Zhejiang Province (LGJ21F030001)the National Natural Science Foundation of China (62302448)the Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (2013E10012)。
文摘In this paper, we study the supervisory control problem of discrete event systems assuming that cyber-attacks might occur. In particular, we focus on the problem of liveness enforcement and consider a sensor-reading modification attack(SM-attack) that may disguise the occurrence of an event as that of another event by intruding sensor communication channels. To solve the problem, we introduce non-deterministic supervisors in the paper, which associate to every observed sequence a set of possible control actions offline and choose a control action from the set randomly online to control the system. Specifically, given a bounded Petri net(PN) as the reference formalism and an SMattack, an algorithm that synthesizes a liveness-enforcing nondeterministic supervisor tolerant to the SM-attack is proposed for the first time.
文摘Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding.
基金supported in part by Zhejiang Provincial Key Research and Development Program(2018C01084)Zhejiang Natural Science Foundation(LQ20F020009)Zhejiang Gongshang University,Zhejiang Provincial Key Laboratory of New Network Standards and Technologies(2013E10012)。
文摘Deadlock resolution strategies based on siphon control are widely investigated.Their computational efficiency largely depends on siphon computation.Mixed-integer programming(MIP)can be utilized for the computation of an emptiable siphon in a Petri net(PN).Based on it,deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity.Due to this reason,various MIP methods are proposed for various subclasses of PNs.This work proposes an innovative MIP method to compute an emptiable minimal siphon(EMS)for a subclass of PNs named S^(4)PR.In particular,many particular structural characteristics of EMS in S4 PR are formalized as constraints,which greatly reduces the solution space.Experimental results show that the proposed MIP method has higher computational efficiency.Furthermore,the proposed method allows one to determine the liveness of an ordinary S^(4)PR.
基金supported in part by the Zhejiang Natural Science Foundation(LQ20F020009)the Zhejiang Provincial Key Laboratory of New Network Standards and Technologies(2013E10012)the Public Technology Research Plan of Zhejiang Province(LGJ21F030001)。
文摘A large amount of research has shown the vitality of siphon enumeration in the analysis and control of deadlocks in various resource-allocation systems modeled by Petri nets(PNs).In this paper,we propose an algorithm for the enumeration of minimal siphons in PN based on problem decomposition.The proposed algorithm is an improved version of the global partitioning minimal-siphon enumeration(GPMSE)proposed by Cordone et al.(2005)in IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,which is widely used in the literature to compute minimal siphons.The experimental results show that the proposed algorithm consumes lower computational time and memory compared with GPMSE,which becomes more evident when the size of the handled net grows.
基金supported by National Natural Science Foundation of China(61374148,61472361,61374005)Natural Science Foundation of Zhejiang Province(LY15F030003,LY15F030002,LR14F020001)+3 种基金the National Science Foundation of USA(CMMI-1162482)the Opening Project of State Key Laboratory for Manufacturing Systems Engineering(sklms2014011)Zhejiang NNST Key Laboratory(2015C31064)the State Scholarship Fund of China