The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F...Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp...Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.展开更多
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re...To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.展开更多
The growth behavior of the complex intermetallic compounds(IMCs)formed at the interface of Cu/SnPbInBiSb high entropy alloy solder joints was explored.The growth inhibition mechanism of the IMCs at the Cu/SnPbInBiSb s...The growth behavior of the complex intermetallic compounds(IMCs)formed at the interface of Cu/SnPbInBiSb high entropy alloy solder joints was explored.The growth inhibition mechanism of the IMCs at the Cu/SnPbInBiSb solid−liquid reaction interface was revealed.The results showed that the growth rate of the complex IMCs obviously decreased at the Cu/SnPbInBiSb solid−liquid reaction interface.The maximum average thickness of IMCs only reached up to 1.66μm after reflowing at 200℃for 10 min.The mechanism for the slow growth of the complex IMCs was analyzed into three aspects.Firstly,the high entropy of the liquid SnPbInBiSb alloy reduced the growth rate of the complex IMCs.Secondly,the distorted lattice of complex IMCs restrained the diffusion of Cu atoms.Lastly,the higher activation energy(40.9 kJ/mol)of Cu/SnPbInBiSb solid−liquid interfacial reaction essentially impeded the growth of the complex IMCs.展开更多
The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly charac...The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.展开更多
Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeos...Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.展开更多
Objective:Hepatocellular carcinoma(HCC)is a prevalent malignancy with poor survival.Different cell types in the tumor microenvironment participate in the tumorigenesis and progression of HCC.This study aimed to analyz...Objective:Hepatocellular carcinoma(HCC)is a prevalent malignancy with poor survival.Different cell types in the tumor microenvironment participate in the tumorigenesis and progression of HCC.This study aimed to analyze the immune microenvironment of HCC and its relationship with clinical outcomes.Methods:We analyzed HCC RNA-seq for cell type identification and prognosis by estimating relative subsets of RNA transcripts using CIBERSORTx.The interaction between B cells and macrophages in HCC was analyzed using a Hepa1-6 orthotopic transplantation mouse model and flow cytometry.The effect of Zinc finger protein 296(ZNF296)on the interaction of B cells and macrophages was verified using human HCC tissues analyzed through western blot,quantitative real-time polymerase chain reaction(qPCR),and multiplex immunofluorescence.A comparative analysis of immune cells associated with HCC prognosis was performed using RNA-seq data from The Cancer Genome Atlas(TCGA),bulk multimodal data,and single-cell transcriptomic data from existing HCC single-cell transcriptomic data employing the Single Cell Inferred Site Specific Omics Resource for Tumor Microenvironments(SCISSOR).Results:Liver hepatocellular carcinoma(LIHC)RNA-seq analysis of TCGA showed that high eosinophil infiltration promoted HCC progression.The proportion of B cells correlated with that of macrophages(r=−0.24)and affected the infiltration and programmed death ligand 1(PD-L1)expression of macrophages in HCC.ZNF296 may participate in the interaction between B cells and macrophages to accelerate the HCC progression by regulating PAFAH1B3 and H2AFX.Moreover,ZNF296 expression positively correlated with LAG3(r=0.27)and CTLA4(r=0.31)expression levels.Among the immune cell phenotypes related to survival and death identified by SCISSOR analysis,T cells correlated with an excellent prognosis of HCC.The normal function of liver and dendritic cells was also associated with a good prognosis in HCC.Conclusions:This study analyzed the interaction of the immune microenvironment with HCC prognosis,identifying ZNF296 as a promising diagnostic and therapeutic target for HCC.展开更多
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most...With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection.展开更多
The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating tera...The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating terahertz(THz)frequencies alongside existing gigahertz(GHz)modes,drive the need for a versatile multi-band electromagnetic wave(EMW)absorbing and shielding material.This study introduces a pivotal advance via a new strategy,called ultrafast laser-induced thermal-chemical transformation and encapsulation of nanoalloys(LITENs).Employing multivariate metal-organic frameworks,this approach tailors a porous,multifunctional graphene-encased magnetic nanoalloy(GEMN).By fine-tuning pulse laser parameters and material components,the resulting GEMN excels in low-frequency absorption and THz shielding.GEMN achieves a breakthrough of minimum reflection loss of−50.6 dB in the optimal C-band(around 4.98 GHz).Computational evidence reinforces GEMN’s efficacy in reducing radar cross sections.Additionally,GEMN demonstrates superior electromagnetic interference shielding,reaching 98.92 dB under THz band(0.1–2 THz),with the mean value result of 55.47 dB.These accomplishments underscore GEMN’s potential for 6G signal shielding.In summary,LITEN yields the remarkable EMW controlling performance,holding promise in both GHz and THz frequency domains.This contribution heralds a paradigm shift in EM absorption and shielding materials,establishing a universally applicable framework with profound implications for future pursuits.展开更多
Determining the timing of fracturing is crucial for understanding reservoir evolution and hydrocarbon accumulation in foreland basins.Using fracturing data from cores,borehole images,and outcrops,combined with the clu...Determining the timing of fracturing is crucial for understanding reservoir evolution and hydrocarbon accumulation in foreland basins.Using fracturing data from cores,borehole images,and outcrops,combined with the clumped isotope(D47)and fluid inclusion analyses of carbonate minerals filled in pores and fractures,this study ascertained the fracturing timing of the Jurassic reservoirs in the Dibei-Tuziluoke Gas Field,Kuqa Foreland Basin.Data from outcrops and borehole images show two dominant fracture sets in the study area:W-E and NE-SW striking fractures.Some W-E striking fractures are carbonate-filled,while NE-SW striking fractures lack mineral fillings.Bitumen veins,not easy to be identified in borehole images,are prevalent in cores.The petrographic analysis reveals that these bitumen veins formed before the calcite cementation in pores and display high viscosity and low maturity.Homogenization temperatures(T_(h))from primary fluid inclusion assemblages in two representative calcite vein samples were notably lower than T_(△47) values from corresponding samples.This suggests the △_(47) signature underwent alteration due to partial reordering during burial.Thus,△_(47)-derived temperatures(apparent temperatures)may not faithfully represent the mineral precipitation temperatures.When plotting these apparent temperatures vs.the burial history,only the possible latest ages of fracturing emerged.These ages were further refined by considering petroleum charging,tectonic evolution,and stress orientation.Bitumen-filled fractures likely resulted from the Late Cretaceous uplift,marking the migration of low-maturity hydrocarbons in the study area.Carbonate-filled E-W striking fractures emerged during the late Miocene(~13-6.5 Ma)alongside fold development.NE-striking fractures that crosscut W-E ones possibly formed recently due to stress reorientation.展开更多
This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to revi...This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to review the development and current status of this field,as well as to identify future research trends.A search was conducted on the China National Knowledge Infrastructure(CNKI)database using the keyword“water stress”for relevant studies from 2003 to 2023.The visual analysis function of CNKI was used to generate the distribution of annual publication volume,and CiteSpace 6.1.R6 was utilized to create network maps illustrating collaboration among authors and institutions.The study also analyzed the hotspots and frontiers of economic forest water stress.As a result,a total of 6664 academic journal articles related to water stress were retrieved.Considerable collaboration networks were observed among scholars and institutions,with a focus on using crown temperature monitoring to diagnose crop water stress.Based on the research findings,it was evident that the primary research trend involved the use of thermal infrared and spectral remote sensing technology for estimating water stress,making it a future research hotspot.展开更多
RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still...RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.展开更多
Objective To investigate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity and its association with longterm clinical outcome in patients with coronary heart disease(CHD)undergoing percutaneous coronar...Objective To investigate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity and its association with longterm clinical outcome in patients with coronary heart disease(CHD)undergoing percutaneous coronary intervention(PCI).Methods In total,675 patients were enrolled.Based on the platelet inhibition rate,patients were categorized into two groups:clopidogrel low responsiveness(CLR)and normal clopidogrel responsiveness(NCR).The CLR group was divided into ticagrelor and clopidogrel group based on the antiplatelet drugs used in the follow-up treatment.Patients were classified into three groups(normal metabolizer,intermediate metabolizer,and poor metabolizer)based on the CYP2C19 genotype.We aimed to evaluate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity.The cumulative rates of 12-month all-cause deaths,major adverse cardiovascular events(MACCEs),and bleeding events were calculated.Results CLR was observed in 44.4%of the overall population.Significant differences were observed in the platelet inhibition rate of clopidogrel among the three metabolic genotypes(P<0.05).At the 12-month follow-up,13 patients(1.9%)died and 96 patients(14.2%)experienced MACCEs.Patients with CLR(9.6%vs.11.7%vs.22.1%,P<0.05)or poor metabolizer(10.7%vs.16.4%vs.22.6%,P=0.026)experienced a higher rate of MACCEs.A MACCEs risk score between zero and two was calculated.The highest incidence of MACCEs significantly increased with the 2-positive results,and the area under the curve(AUC)was 0.712(95%CI:0.650-0.774,P<0.05).There was no significant difference between the group with a score of one and the occurrence of MACCEs(P>0.05).Conclusions Low response to clopidogrel in CHD patients is correlated with CYP2C19 gene polymorphism.CYP2C19 genotyping combined with platelet reactivity is an independent predictor of 12-months MACCEs in patients with clopidogrel treatment after PCI,which is better than either test alone.展开更多
The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more ...The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.展开更多
Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be...Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be beneficial in multiple medical fields,such as diagnosis and privacy protection.Previous studies on face animation often relied on a single source image to generate an output video.With a significant pose difference between the source image and the driving frame,the quality of the generated video is likely to be suboptimal because the source image may not provide sufficient features for the warped feature map.Methods In this study,we propose a novel face-animation scheme based on multiple sources and perspective alignment to address these issues.We first introduce a multiple-source sampling and selection module to screen the optimal source image set from the provided driving video.We then propose an inter-frame interpolation and alignment module to further eliminate the misalignment between the selected source image and the driving frame.Conclusions The proposed method exhibits superior performance in terms of objective metrics and visual quality in large-angle animation scenes compared to other state-of-the-art face animation methods.It indicates the effectiveness of the proposed method in addressing the distortion issues in large-angle animation.展开更多
BACKGROUND The efficacy and safety of anti-tumor necrosis factor-α(TNF-α)monoclonal antibody therapy[adalimumab(ADA)and infliximab(IFX)]with therapeutic drug monitoring(TDM),which has been proposed for inflammatory ...BACKGROUND The efficacy and safety of anti-tumor necrosis factor-α(TNF-α)monoclonal antibody therapy[adalimumab(ADA)and infliximab(IFX)]with therapeutic drug monitoring(TDM),which has been proposed for inflammatory bowel disease(IBD)patients,are still controversial.AIM To determine the efficacy and safety of anti-TNF-αmonoclonal antibody therapy with proactive TDM in patients with IBD and to determine which subtype of IBD patients is most suitable for proactive TDM interventions.METHODS As of July 2023,we searched for randomized controlled trials(RCTs)and observa-tional studies in PubMed,Embase,and the Cochrane Library to compare anti-TNF-αmonoclonal antibody therapy with proactive TDM with therapy with reactive TDM or empiric therapy.Pairwise and network meta-analyses were used to determine the IBD patient subtype that achieved clinical remission and to determine the need for surgery.RESULTS This systematic review and meta-analysis yielded 13 studies after exclusion,and the baseline indicators were balanced.We found a significant increase in the number of patients who achieved clinical remission in the ADA[odds ratio(OR)=1.416,95%confidence interval(CI):1.196-1.676]and RCT(OR=1.393,95%CI:1.182-1.641)subgroups and a significant decrease in the number of patients who needed surgery in the proactive vs reactive(OR=0.237,95%CI:0.101-0.558)and IFX+ADA(OR=0.137,95%CI:0.032-0.588)subgroups,and the overall risk of adverse events was reduced(OR=0.579,95%CI:0.391-0.858)according to the pairwise meta-analysis.Moreover,the network meta-analysis results suggested that patients with IBD treated with ADA(OR=1.39,95%CI:1.19-1.63)were more likely to undergo TDM,especially in comparison with patients with reactive TDM(OR=1.38,95%CI:1.07-1.77).CONCLUSION Proactive TDM is more suitable for IBD patients treated with ADA and has obvious advantages over reactive TDM.We recommend proactive TDM in IBD patients who are treated with ADA.展开更多
BACKGROUND Heat shock protein A4(HSPA4)belongs to molecular chaperone protein family which plays important roles within variable cellular activities,including cancer initiation and progression.However,the prognostic a...BACKGROUND Heat shock protein A4(HSPA4)belongs to molecular chaperone protein family which plays important roles within variable cellular activities,including cancer initiation and progression.However,the prognostic and immunological significance of HSPA4 in lung adenocarcinoma(LUAD)has not been revealed yet.AIM To explore the prognostic and immunological roles of HSPA4 to identify a novel prognostic biomarker and therapeutic target for LUAD.METHODS We assessed the prognostic and immunological significance of HSPA4 in LUAD using data from The Cancer Genome Atlas database.The association between HSPA4 expression and clinical-pathological features was assessed through Kruskal-Wallis and Wilcoxon signed-rank test.Univariate/multivariate Cox regression analyses and Kaplan-Meier curves were employed to evaluate prognostic factors,including HSPA4,in LUAD.Gene set enrichment analysis(GSEA)was conducted to identify the key signaling pathways associated with HSPA4.The correlation between HSPA4 expression and cancer immune infiltration was evaluated using single-sample gene set enrichment analysis(ssGSEA).RESULTS Overexpressing HSPA4 was significantly related to advanced pathologic TNM stage,advanced pathologic stage,progression disease status of primary therapy outcome and female subgroups with LUAD.In addition,increased HSPA4 expression was found to be related to worse disease-specific survival and overall survival.GSEA analysis indicated a significant correlation between HSPA4 and cell cycle regulation and immune response,particularly through diminishing the function of cytotoxicity cells and CD8 T cells.The ssGSEA algorithm showed a positive correlation between HSPA4 expression and infiltrating levels of Th2 cells,while a negative correlation was observed with cytotoxic cell infiltration levels.CONCLUSION Our findings indicate HSPA4 is related to prognosis and immune cell infiltrates and may act as a novel prognostic biomarker and therapeutic target for LUAD.展开更多
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金supported by the National Natural Science Foundation of China(Nos.51879184 and 12172253).
文摘Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.
基金supported by the National Key R&D Plan of China(Grant 2021YFB3600703)the National Natural Science Foundation(Grant 62204137)of China for Youth,the Open Research Fund Program of Beijing National Research Centre for Information Science and Technology(BR2023KF02009)+1 种基金the National Natural Science Foundation of china(U20A20168,61874065,and 51861145202)the Research Fund from Tsinghua University Initiative Scientific Research Program,the Center for Flexible Electronics Technology of Tsinghua University,and a grant from the Guoqiang Institute,Tsinghua University.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52201116,52071116,and 52261135543)+1 种基金Heilongjiang Touyan Team ProgramChina Postdoctoral Science Foundation(No.2022M710939).
文摘To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.
基金supported by the National Natural Science Foundation of China (No.U2241223)the Heilongjiang Touyan Innovation Team Program,China (No.HITTY-20190013)the Fundamental Research Funds for the Central Universities,China (No.AUEA5770400622)。
文摘The growth behavior of the complex intermetallic compounds(IMCs)formed at the interface of Cu/SnPbInBiSb high entropy alloy solder joints was explored.The growth inhibition mechanism of the IMCs at the Cu/SnPbInBiSb solid−liquid reaction interface was revealed.The results showed that the growth rate of the complex IMCs obviously decreased at the Cu/SnPbInBiSb solid−liquid reaction interface.The maximum average thickness of IMCs only reached up to 1.66μm after reflowing at 200℃for 10 min.The mechanism for the slow growth of the complex IMCs was analyzed into three aspects.Firstly,the high entropy of the liquid SnPbInBiSb alloy reduced the growth rate of the complex IMCs.Secondly,the distorted lattice of complex IMCs restrained the diffusion of Cu atoms.Lastly,the higher activation energy(40.9 kJ/mol)of Cu/SnPbInBiSb solid−liquid interfacial reaction essentially impeded the growth of the complex IMCs.
文摘The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.
基金funded by the National Key Research and Development Program of China (Grant No.2022YFD1201600)Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-msxmX1064)+1 种基金Earmarked Funds for the China Agriculture Research System (Grant No.CARS-26)Three-year Action Plan of Xi'an University (Grant No.2021XDJH41)。
文摘Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.
基金This work was supported by the National Key R&D Program of China[grant number 2022YFC370110]the National Natural Science Foundation of China[grant numbers 42077194,42061134008,and 42377098]+1 种基金the Shanghai International Science and Technology Partnership Project[grant number 21230780200]the Shanghai General Project[grant number 23ZR1406100].
基金the Key Program of the National Natural Science Foundation of China(No.81930016)National Natural Science Foundation of China(No.92159202 and No.82273177)+1 种基金Key Research and Development Plan of Zhejiang Province(No.2021C03118 and No.2022C03108)Zhejiang Provincial Natural Science Foundation of China(No.LQ20H160029).
文摘Objective:Hepatocellular carcinoma(HCC)is a prevalent malignancy with poor survival.Different cell types in the tumor microenvironment participate in the tumorigenesis and progression of HCC.This study aimed to analyze the immune microenvironment of HCC and its relationship with clinical outcomes.Methods:We analyzed HCC RNA-seq for cell type identification and prognosis by estimating relative subsets of RNA transcripts using CIBERSORTx.The interaction between B cells and macrophages in HCC was analyzed using a Hepa1-6 orthotopic transplantation mouse model and flow cytometry.The effect of Zinc finger protein 296(ZNF296)on the interaction of B cells and macrophages was verified using human HCC tissues analyzed through western blot,quantitative real-time polymerase chain reaction(qPCR),and multiplex immunofluorescence.A comparative analysis of immune cells associated with HCC prognosis was performed using RNA-seq data from The Cancer Genome Atlas(TCGA),bulk multimodal data,and single-cell transcriptomic data from existing HCC single-cell transcriptomic data employing the Single Cell Inferred Site Specific Omics Resource for Tumor Microenvironments(SCISSOR).Results:Liver hepatocellular carcinoma(LIHC)RNA-seq analysis of TCGA showed that high eosinophil infiltration promoted HCC progression.The proportion of B cells correlated with that of macrophages(r=−0.24)and affected the infiltration and programmed death ligand 1(PD-L1)expression of macrophages in HCC.ZNF296 may participate in the interaction between B cells and macrophages to accelerate the HCC progression by regulating PAFAH1B3 and H2AFX.Moreover,ZNF296 expression positively correlated with LAG3(r=0.27)and CTLA4(r=0.31)expression levels.Among the immune cell phenotypes related to survival and death identified by SCISSOR analysis,T cells correlated with an excellent prognosis of HCC.The normal function of liver and dendritic cells was also associated with a good prognosis in HCC.Conclusions:This study analyzed the interaction of the immune microenvironment with HCC prognosis,identifying ZNF296 as a promising diagnostic and therapeutic target for HCC.
基金supported in part by National Natural Science Foundation of China(Nos.62102311,62202377,62272385)in part by Natural Science Basic Research Program of Shaanxi(Nos.2022JQ-600,2022JM-353,2023-JC-QN-0327)+2 种基金in part by Shaanxi Distinguished Youth Project(No.2022JC-47)in part by Scientific Research Program Funded by Shaanxi Provincial Education Department(No.22JK0560)in part by Distinguished Youth Talents of Shaanxi Universities,and in part by Youth Innovation Team of Shaanxi Universities.
文摘With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection.
文摘The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating terahertz(THz)frequencies alongside existing gigahertz(GHz)modes,drive the need for a versatile multi-band electromagnetic wave(EMW)absorbing and shielding material.This study introduces a pivotal advance via a new strategy,called ultrafast laser-induced thermal-chemical transformation and encapsulation of nanoalloys(LITENs).Employing multivariate metal-organic frameworks,this approach tailors a porous,multifunctional graphene-encased magnetic nanoalloy(GEMN).By fine-tuning pulse laser parameters and material components,the resulting GEMN excels in low-frequency absorption and THz shielding.GEMN achieves a breakthrough of minimum reflection loss of−50.6 dB in the optimal C-band(around 4.98 GHz).Computational evidence reinforces GEMN’s efficacy in reducing radar cross sections.Additionally,GEMN demonstrates superior electromagnetic interference shielding,reaching 98.92 dB under THz band(0.1–2 THz),with the mean value result of 55.47 dB.These accomplishments underscore GEMN’s potential for 6G signal shielding.In summary,LITEN yields the remarkable EMW controlling performance,holding promise in both GHz and THz frequency domains.This contribution heralds a paradigm shift in EM absorption and shielding materials,establishing a universally applicable framework with profound implications for future pursuits.
基金funded by the PetroChina Major Research Program on Deep Petroleum System in the Tarim Basin(No.ZD 2019-183-01-003)the Major Research Project on the Tethys Geodynamic System from the National Natural Science Foundation of China(No.92055204)the National Natural Science Foundation of China(No.42072134).
文摘Determining the timing of fracturing is crucial for understanding reservoir evolution and hydrocarbon accumulation in foreland basins.Using fracturing data from cores,borehole images,and outcrops,combined with the clumped isotope(D47)and fluid inclusion analyses of carbonate minerals filled in pores and fractures,this study ascertained the fracturing timing of the Jurassic reservoirs in the Dibei-Tuziluoke Gas Field,Kuqa Foreland Basin.Data from outcrops and borehole images show two dominant fracture sets in the study area:W-E and NE-SW striking fractures.Some W-E striking fractures are carbonate-filled,while NE-SW striking fractures lack mineral fillings.Bitumen veins,not easy to be identified in borehole images,are prevalent in cores.The petrographic analysis reveals that these bitumen veins formed before the calcite cementation in pores and display high viscosity and low maturity.Homogenization temperatures(T_(h))from primary fluid inclusion assemblages in two representative calcite vein samples were notably lower than T_(△47) values from corresponding samples.This suggests the △_(47) signature underwent alteration due to partial reordering during burial.Thus,△_(47)-derived temperatures(apparent temperatures)may not faithfully represent the mineral precipitation temperatures.When plotting these apparent temperatures vs.the burial history,only the possible latest ages of fracturing emerged.These ages were further refined by considering petroleum charging,tectonic evolution,and stress orientation.Bitumen-filled fractures likely resulted from the Late Cretaceous uplift,marking the migration of low-maturity hydrocarbons in the study area.Carbonate-filled E-W striking fractures emerged during the late Miocene(~13-6.5 Ma)alongside fold development.NE-striking fractures that crosscut W-E ones possibly formed recently due to stress reorientation.
基金the Inner Mongolia Natural Science Foundation(2023MS06002)the Scientific Research Project of Higher Education Institutions of Inner Mongolia Autonomous Region(NJZZ22509)+1 种基金the Development Project of Young Scientific and Technological Talents(Innovative Teams)of Inner Mongolia Autonomous Region 2023(NHGIRT2312)the Project of Research and Practice on Teaching Reform of Graduate Education of Inner Mongolia Autonomous Region(JGCG2023049)were funded.
文摘This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to review the development and current status of this field,as well as to identify future research trends.A search was conducted on the China National Knowledge Infrastructure(CNKI)database using the keyword“water stress”for relevant studies from 2003 to 2023.The visual analysis function of CNKI was used to generate the distribution of annual publication volume,and CiteSpace 6.1.R6 was utilized to create network maps illustrating collaboration among authors and institutions.The study also analyzed the hotspots and frontiers of economic forest water stress.As a result,a total of 6664 academic journal articles related to water stress were retrieved.Considerable collaboration networks were observed among scholars and institutions,with a focus on using crown temperature monitoring to diagnose crop water stress.Based on the research findings,it was evident that the primary research trend involved the use of thermal infrared and spectral remote sensing technology for estimating water stress,making it a future research hotspot.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC02040300)for this study.
文摘RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.
基金supported by the National Natural Science Foundation of China(No.62172288).
文摘Objective To investigate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity and its association with longterm clinical outcome in patients with coronary heart disease(CHD)undergoing percutaneous coronary intervention(PCI).Methods In total,675 patients were enrolled.Based on the platelet inhibition rate,patients were categorized into two groups:clopidogrel low responsiveness(CLR)and normal clopidogrel responsiveness(NCR).The CLR group was divided into ticagrelor and clopidogrel group based on the antiplatelet drugs used in the follow-up treatment.Patients were classified into three groups(normal metabolizer,intermediate metabolizer,and poor metabolizer)based on the CYP2C19 genotype.We aimed to evaluate the impact of CYP2C19 gene polymorphism on clopidogrel reactivity.The cumulative rates of 12-month all-cause deaths,major adverse cardiovascular events(MACCEs),and bleeding events were calculated.Results CLR was observed in 44.4%of the overall population.Significant differences were observed in the platelet inhibition rate of clopidogrel among the three metabolic genotypes(P<0.05).At the 12-month follow-up,13 patients(1.9%)died and 96 patients(14.2%)experienced MACCEs.Patients with CLR(9.6%vs.11.7%vs.22.1%,P<0.05)or poor metabolizer(10.7%vs.16.4%vs.22.6%,P=0.026)experienced a higher rate of MACCEs.A MACCEs risk score between zero and two was calculated.The highest incidence of MACCEs significantly increased with the 2-positive results,and the area under the curve(AUC)was 0.712(95%CI:0.650-0.774,P<0.05).There was no significant difference between the group with a score of one and the occurrence of MACCEs(P>0.05).Conclusions Low response to clopidogrel in CHD patients is correlated with CYP2C19 gene polymorphism.CYP2C19 genotyping combined with platelet reactivity is an independent predictor of 12-months MACCEs in patients with clopidogrel treatment after PCI,which is better than either test alone.
基金the National Key Research and Development Programme of China(Grant No.2023YFC3804903).
文摘The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.
基金the Fund from Sichuan Provincial Key Laboratory of Intelligent Terminals(SCITLAB-20016).
文摘Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be beneficial in multiple medical fields,such as diagnosis and privacy protection.Previous studies on face animation often relied on a single source image to generate an output video.With a significant pose difference between the source image and the driving frame,the quality of the generated video is likely to be suboptimal because the source image may not provide sufficient features for the warped feature map.Methods In this study,we propose a novel face-animation scheme based on multiple sources and perspective alignment to address these issues.We first introduce a multiple-source sampling and selection module to screen the optimal source image set from the provided driving video.We then propose an inter-frame interpolation and alignment module to further eliminate the misalignment between the selected source image and the driving frame.Conclusions The proposed method exhibits superior performance in terms of objective metrics and visual quality in large-angle animation scenes compared to other state-of-the-art face animation methods.It indicates the effectiveness of the proposed method in addressing the distortion issues in large-angle animation.
基金Supported by National College Students Innovation and Entrepreneurship Training Program of Shenyang Pharmaceutical University,No.202210163003.
文摘BACKGROUND The efficacy and safety of anti-tumor necrosis factor-α(TNF-α)monoclonal antibody therapy[adalimumab(ADA)and infliximab(IFX)]with therapeutic drug monitoring(TDM),which has been proposed for inflammatory bowel disease(IBD)patients,are still controversial.AIM To determine the efficacy and safety of anti-TNF-αmonoclonal antibody therapy with proactive TDM in patients with IBD and to determine which subtype of IBD patients is most suitable for proactive TDM interventions.METHODS As of July 2023,we searched for randomized controlled trials(RCTs)and observa-tional studies in PubMed,Embase,and the Cochrane Library to compare anti-TNF-αmonoclonal antibody therapy with proactive TDM with therapy with reactive TDM or empiric therapy.Pairwise and network meta-analyses were used to determine the IBD patient subtype that achieved clinical remission and to determine the need for surgery.RESULTS This systematic review and meta-analysis yielded 13 studies after exclusion,and the baseline indicators were balanced.We found a significant increase in the number of patients who achieved clinical remission in the ADA[odds ratio(OR)=1.416,95%confidence interval(CI):1.196-1.676]and RCT(OR=1.393,95%CI:1.182-1.641)subgroups and a significant decrease in the number of patients who needed surgery in the proactive vs reactive(OR=0.237,95%CI:0.101-0.558)and IFX+ADA(OR=0.137,95%CI:0.032-0.588)subgroups,and the overall risk of adverse events was reduced(OR=0.579,95%CI:0.391-0.858)according to the pairwise meta-analysis.Moreover,the network meta-analysis results suggested that patients with IBD treated with ADA(OR=1.39,95%CI:1.19-1.63)were more likely to undergo TDM,especially in comparison with patients with reactive TDM(OR=1.38,95%CI:1.07-1.77).CONCLUSION Proactive TDM is more suitable for IBD patients treated with ADA and has obvious advantages over reactive TDM.We recommend proactive TDM in IBD patients who are treated with ADA.
文摘BACKGROUND Heat shock protein A4(HSPA4)belongs to molecular chaperone protein family which plays important roles within variable cellular activities,including cancer initiation and progression.However,the prognostic and immunological significance of HSPA4 in lung adenocarcinoma(LUAD)has not been revealed yet.AIM To explore the prognostic and immunological roles of HSPA4 to identify a novel prognostic biomarker and therapeutic target for LUAD.METHODS We assessed the prognostic and immunological significance of HSPA4 in LUAD using data from The Cancer Genome Atlas database.The association between HSPA4 expression and clinical-pathological features was assessed through Kruskal-Wallis and Wilcoxon signed-rank test.Univariate/multivariate Cox regression analyses and Kaplan-Meier curves were employed to evaluate prognostic factors,including HSPA4,in LUAD.Gene set enrichment analysis(GSEA)was conducted to identify the key signaling pathways associated with HSPA4.The correlation between HSPA4 expression and cancer immune infiltration was evaluated using single-sample gene set enrichment analysis(ssGSEA).RESULTS Overexpressing HSPA4 was significantly related to advanced pathologic TNM stage,advanced pathologic stage,progression disease status of primary therapy outcome and female subgroups with LUAD.In addition,increased HSPA4 expression was found to be related to worse disease-specific survival and overall survival.GSEA analysis indicated a significant correlation between HSPA4 and cell cycle regulation and immune response,particularly through diminishing the function of cytotoxicity cells and CD8 T cells.The ssGSEA algorithm showed a positive correlation between HSPA4 expression and infiltrating levels of Th2 cells,while a negative correlation was observed with cytotoxic cell infiltration levels.CONCLUSION Our findings indicate HSPA4 is related to prognosis and immune cell infiltrates and may act as a novel prognostic biomarker and therapeutic target for LUAD.