While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
Background:Globally,despite prostate cancer(PCa)representing second most prevalent malignancy in male,the precise molecular mechanisms implicated in its pathogenesis remain unclear.Consequently,elucidating the key mol...Background:Globally,despite prostate cancer(PCa)representing second most prevalent malignancy in male,the precise molecular mechanisms implicated in its pathogenesis remain unclear.Consequently,elucidating the key molecular regulators that govern disease progression could substantially contribute to the establishment of novel therapeutic strategies,ultimately advancing the management of PCa.Methods:A total of 49 PCa tissues and 43 adjacent normal tissues were collected from January 2017 to December 2021 at Zhongnan Hospital of Wuhan University.The advanced transcriptomic methodologies were employed to identify differentially expressed mRNAs in PCa.The expression of aspartoacylase(ASPA)in PCa was thoroughly evaluated using quantitative real-time PCR and Western blotting techniques.To elucidate the inhibitory role of ASPA in PCa cell proliferation and metastasis,a comprehensive set of in vitro and in vivo assays were conducted,including orthotopic and tumor-bearing mouse models(n=8 for each group).A combination of experimental approaches,such as Western blotting,luciferase assays,immunoprecipitation assays,mass spectrometry,glutathione S-transferase pulldown experiments,and rescue studies,were employed to investigate the underlying molecular mechanisms of ASPA's action in PCa.The Student‘s t-test was employed to assess the statistical significance between two distinct groups,while one-way analysis of variance was utilized for comparisons involving more than two groups.A two-sided P<0.05 was deemed to indicate statistical significance.Results:ASPA was identified as a novel inhibitor of PCa progression.The expression of ASPA was found to be significantly down-regulated in PCa tissue samples,and its decreased expression was independently associated with patients’prognosis(HR=0.60,95%CI 0.40–0.92,P=0.018).Our experiments demonstrated that modulation of ASPA activity,either through gain-or loss-of-function,led to the suppression or enhancement of PCa cell proliferation,migration,and invasion,respectively.The inhibitory role of ASPA in PCa was further confirmed using orthotopic and tumor-bearing mouse models.Mechanistically,ASPA was shown to directly interact with the LYN and inhibit the phosphorylation of LYN as well as its downstream targets,JNK1/2 and C-Jun,in both PCa cells and mouse models,in an enzyme-independent manner.Importantly,the inhibition of LYN activation by bafetinib abrogated the promoting effect of ASPA knockdown on PCa progression in both in vitro and in vivo models.Moreover,we observed an inverse relationship between ASPA expression and LYN activity in clinical PCa samples,suggesting a potential regulatory role of ASPA in modulating LYN signaling.Conclusions:Our findings provide novel insights into the tumor-suppressive function of ASPA in PCa and highlight its potential as a prognostic biomarker and therapeutic target for the management of this malignancy.展开更多
The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade compl...The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.展开更多
Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communicat...Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communication,volunteers were given low,medium,and high doses of glucose and fructose.Serum cytokines,glucose,lactate,nicotinamide adenine dinucleotide(NADH)and metabolic enzymes were assayed,and central carbon metabolic pathway networks and cytokine communication networks were constructed.The results showed that the glucose and fructose groups basically maintained the trend of decreasing catabolism and increasing anabolism with increasing dose.Compared with glucose,low-dose fructose decreased catabolism and increased anabolism,significantly enhanced the expression of the inflammatory cytokine interferon-γ(IFN-γ),macrophage-derived chemokine(MDC),induced protein-10(IP-10),and eotaxin,and significantly reduced the activity of isocitrate dehydrogenase(ICDH)and pyruvate dehydrogenase complexes(PDHC).Both medium and high doses of fructose increase catabolism and anabolism,and there are more cytokines and enzymes with significant changes.Furthermore,multiple cytokines and enzymes show strong relevance to metabolic regulation by altering the transcription and expression of enzymes in central carbon metabolic pathways.Therefore,excessive intake of fructose should be reduced to avoid excessive inflammatory responses,allergic reactions and autoimmune diseases.展开更多
Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distributio...Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.展开更多
Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in th...Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.展开更多
Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational h...Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.展开更多
提出一种难选石煤在空气气氛下悬浮焙烧-酸浸强化的提钒新技术。在焙烧温度为800℃、焙烧时间为20 min、气体流量为400 m L/min的条件下钒的浸出率从过去的20%提高到目前技术的47.14%。在焙烧过程中,石煤表面逐渐变得粗糙和不规则,颗粒...提出一种难选石煤在空气气氛下悬浮焙烧-酸浸强化的提钒新技术。在焙烧温度为800℃、焙烧时间为20 min、气体流量为400 m L/min的条件下钒的浸出率从过去的20%提高到目前技术的47.14%。在焙烧过程中,石煤表面逐渐变得粗糙和不规则,颗粒比表面积增加,硅酸盐矿物的片状结构被破坏,促进了钒的释放。同时,石煤中的钒被氧化为V(Ⅴ)或V(Ⅳ)。结果表明,由于悬浮焙烧过程中钒的释放和转化,因此,其浸出率得到了提高。展开更多
NAC transcriptional regulators are crucial for tomato ripening.Virus-induced gene silencing(VIGS)of SNAC9(SlNAC19,Gene ID:101248665)affects tomato ripening,and SNAC9 is involved in ethylene and abscisic acid(ABA)metab...NAC transcriptional regulators are crucial for tomato ripening.Virus-induced gene silencing(VIGS)of SNAC9(SlNAC19,Gene ID:101248665)affects tomato ripening,and SNAC9 is involved in ethylene and abscisic acid(ABA)metabolic pathways.However,the function of SNAC9 in pigment metabolism in tomatoes remains unclear.This work seeks to discover the mechanism of SNAC9 involvement in pigment metabolism during tomato ripening by establishing a SNAC9 knockout model using CRISPR/Cas9 technology.The results indicated that fruit ripening was delayed in knockout(KO)mutants,and SNAC9 mutation significantly affected carotenoid metabolism.The chlorophyll(Chl)degradation rate,total carotenoid content,and lycopene content decreased significantly in the mutants.The transformation rate of chloroplasts to chromoplasts in mutants was slower,which was related to the carotenoid content.Furthermore,SNAC9 changed the expression of critical genes(PSY1,PDS,CRTISO,Z-ISO,SGR1,DXS2,LCYE,LCYB,and CrtR-b2)involved in pigment metabolism in tomato ripening.SNAC9 knockout also altered the expression levels of critical genes involved in the biosynthesis of ethylene and ABA.Accordingly,SNAC9 regulated carotenoid metabolism by directly regulating PSY1,DXS2,SGR1,and CrtR-b2.This research provides a foundation for developing the tomato ripening network and precise tomato ripening regulation.展开更多
In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results s...In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy.展开更多
Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying...Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin.To study the sources of manganese(Mn),chromium(Cr),nickel(Ni),arsenic(As),cadmium(Cd)and lead(Pb)in Shaying River water,123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020,encompassing normal water period,dry season and wet season.The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater,industrial sewage wastewater,groundwater,mine water,and the heavy metal contributions from agricultural non-point source pollution.The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation,While Cr mainly is primarily sourced from urban sewage treatment plant effluents,coal washing wastewater,tannery wastewater,and industrial discharge related to metal processing and manufacturing.Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing.Cd primarily linked to industrial wastewater,particularly from machinery manufacturing and metal processing facilities,while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater.These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.展开更多
Controlling fertility of rodent pests has become an effective means of controlling the population of grassland rodents in China. Recently, research has focused on how to select environmentally-friendly sterilants with...Controlling fertility of rodent pests has become an effective means of controlling the population of grassland rodents in China. Recently, research has focused on how to select environmentally-friendly sterilants without pollution effects, and to realize sustainable control of pest rodent populations. Sterilants from plant extracts have been mainly selected. In this study, mice were used as the experimental subjects for research on the anti-fertility effects of plant extracts of shikonin and the anti-fertility mechanism of shikonin extract was determined. The mice were divided into four groups, including one control group and three experimental groups. There were three applications of shikonin extract in different concentrations (5 mg·kg<sup>-1</sup>, 20 mg·kg<sup>-1</sup> and 50 mg·kg<sup>-1</sup>). The mice gavage experiments indicated that a shikonin concentration of 50 mg·kg<sup>-1</sup> had the expected anti-fertility effects. Mice copulation experiments showed that the 50 mg·kg<sup>-1</sup> shikonin treatment had significant anti-fertility effects on both female-treatment and female-male-treatment groups. The results of the PCR analysis on the AgRP and ghrelin mRNA from female ovaries and male testicles indicated that shikonin could control mice reproduction by regulating the pituitary gonadal axis. Shikonin, as plant source sterile agent, would have more ideal effects for functioned both sexes sterility.展开更多
Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead...Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead of incidenting it perpendicular. We have measured the negative refractive index, permeability and permittivity by using the S-parameter analysis. Furthermore, it is found out that negative refractive index, permeability and permittivity are dependent upon the width of the wire and the gap between resonators at near-infrared range. This work will be helpful for the fabrication and design of double negative metamaterials structure having negative permeability, permittivity and negative refractive index for in plane applications.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
Safety issue of lithium-ion batteries(LIBs)such as fires and explosions is a significant challenge for their large scale applications.Considering the continuously increased battery energy density and wider large-scale...Safety issue of lithium-ion batteries(LIBs)such as fires and explosions is a significant challenge for their large scale applications.Considering the continuously increased battery energy density and wider large-scale battery pack applications,the possibility of LIBs fire significantly increases.Because of the fast burning and the easy re-ignition characteristics of LIBs,achieving an efficient and prompt LIBs fire suppression is critical for minimizing the fire hazards.Different from conventional fire hazards,the LIBs fire shows complicated and comprehensive characteristics,and an effective and suitable fire-extinguishing agent particularly designed for LIBs is highly desirable.Considerable efforts have been devoted to this topic,to the best of our knowledge,a comprehensive review on this regard is still rare.Moreover,in practice,a guidance for the design and selections of a proper fire-extinguishing agent for LIBs is urgently needed.Herein,the special mechanisms and characteristics for LIBs fire and the corresponding design principles for LIBs fire-extinguishing agent were introduced.It is revealed that a fire-extinguishing agent developed for LIBs fire will most likely need a high heat capacity,high wetting,low viscosity and low electrical conductivity.After a comprehensive comparison of these agents in terms of these performances,water-based fire-extinguishing agents show best.Several typical fire-extinguishing agents such as gaseous agents,dry powders,water-based and aerosol fire-extinguishing agents were then introduced,and their fire extinguishment mechanisms were presented.Finally,their effectiveness in suppressing the fire were summarized.Water-based fire-extinguishing agents possess high cooling capacity and excellent anti-reflash performance for the fire.We believe this review could shed light on developing an efficient fire-extinguishing agent particularly designed for LIBs.展开更多
A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 m...A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product.展开更多
The pursuit of high energy density has promoted the development of high-performance lithium metal batteries.However,it faces a serious security problem.Ionic liquids have attracted great attention due to their high io...The pursuit of high energy density has promoted the development of high-performance lithium metal batteries.However,it faces a serious security problem.Ionic liquids have attracted great attention due to their high ionic conductivity,non-flammability,and the properties of promoting the formation of stable SEI films.Deeply understanding the problems existing in lithium metal batteries and the role of ionic liquids in them is of great significance for improving the performance of lithium metal batteries.This article reviews the effects of the molecular structure of ionic liquids on ionic conductivity,Li^(+)ion transference number,electrochemical stability window,and lithium metal anode/electrolyte interface,as well as the application of ionic liquids in Li-high voltage cathode batteries,Li-O_(2) batteries and Li-S batteries.The molecular design,composition and polymerization will be the main strategies for the future development of ionic liquid-based electrolytes for high performance lithium metal battery.展开更多
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金supported by the Science and Technology Department of Hubei Province Key Project(YYXKNL2022001)the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2020-PT320-004)+2 种基金the Hubei Provincial Natural Science Foundation(2021CFB453)the Science,Technology and Innovation Seed Fund of Zhongnan Hospital of Wuhan University(CXPY2020031)the Climbing Program for Medical Talents of Zhongnan Hospital of Wuhan University(PDJH202206,PDJH202208)。
文摘Background:Globally,despite prostate cancer(PCa)representing second most prevalent malignancy in male,the precise molecular mechanisms implicated in its pathogenesis remain unclear.Consequently,elucidating the key molecular regulators that govern disease progression could substantially contribute to the establishment of novel therapeutic strategies,ultimately advancing the management of PCa.Methods:A total of 49 PCa tissues and 43 adjacent normal tissues were collected from January 2017 to December 2021 at Zhongnan Hospital of Wuhan University.The advanced transcriptomic methodologies were employed to identify differentially expressed mRNAs in PCa.The expression of aspartoacylase(ASPA)in PCa was thoroughly evaluated using quantitative real-time PCR and Western blotting techniques.To elucidate the inhibitory role of ASPA in PCa cell proliferation and metastasis,a comprehensive set of in vitro and in vivo assays were conducted,including orthotopic and tumor-bearing mouse models(n=8 for each group).A combination of experimental approaches,such as Western blotting,luciferase assays,immunoprecipitation assays,mass spectrometry,glutathione S-transferase pulldown experiments,and rescue studies,were employed to investigate the underlying molecular mechanisms of ASPA's action in PCa.The Student‘s t-test was employed to assess the statistical significance between two distinct groups,while one-way analysis of variance was utilized for comparisons involving more than two groups.A two-sided P<0.05 was deemed to indicate statistical significance.Results:ASPA was identified as a novel inhibitor of PCa progression.The expression of ASPA was found to be significantly down-regulated in PCa tissue samples,and its decreased expression was independently associated with patients’prognosis(HR=0.60,95%CI 0.40–0.92,P=0.018).Our experiments demonstrated that modulation of ASPA activity,either through gain-or loss-of-function,led to the suppression or enhancement of PCa cell proliferation,migration,and invasion,respectively.The inhibitory role of ASPA in PCa was further confirmed using orthotopic and tumor-bearing mouse models.Mechanistically,ASPA was shown to directly interact with the LYN and inhibit the phosphorylation of LYN as well as its downstream targets,JNK1/2 and C-Jun,in both PCa cells and mouse models,in an enzyme-independent manner.Importantly,the inhibition of LYN activation by bafetinib abrogated the promoting effect of ASPA knockdown on PCa progression in both in vitro and in vivo models.Moreover,we observed an inverse relationship between ASPA expression and LYN activity in clinical PCa samples,suggesting a potential regulatory role of ASPA in modulating LYN signaling.Conclusions:Our findings provide novel insights into the tumor-suppressive function of ASPA in PCa and highlight its potential as a prognostic biomarker and therapeutic target for the management of this malignancy.
基金financially supported by the National Key Research and Development Program of China (No.2023YFC2909000)the National Natural Science Foundation of China(No.52174240)the Open Foundation of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2023-15)。
文摘The mechanism involved in the phase transformation process of pyrolusite (MnO_(2)) during roasting in a reducing atmosphere was systematically elucidated in this study,with the aim of effectively using low-grade complex manganese ore resources.According to single-factor experiment results,the roasted product with a divalent manganese (Mn^(2+)) distribution rate of 95.30% was obtained at a roasting time of 25 min,a roasting temperature of 700℃,a CO concentration of 20at%,and a total gas volume of 500 mL·min^(-1),in which the manganese was mainly in the form of manganosite (MnO).Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core Thermodynamic calculations,X-ray photoelectron spectroscopy,and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO phase by phase,and the reduction of manganese oxides in each valence state proceeded simultaneously.
基金financially supported by National Natural Science Foundation of China(31901782)。
文摘Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communication,volunteers were given low,medium,and high doses of glucose and fructose.Serum cytokines,glucose,lactate,nicotinamide adenine dinucleotide(NADH)and metabolic enzymes were assayed,and central carbon metabolic pathway networks and cytokine communication networks were constructed.The results showed that the glucose and fructose groups basically maintained the trend of decreasing catabolism and increasing anabolism with increasing dose.Compared with glucose,low-dose fructose decreased catabolism and increased anabolism,significantly enhanced the expression of the inflammatory cytokine interferon-γ(IFN-γ),macrophage-derived chemokine(MDC),induced protein-10(IP-10),and eotaxin,and significantly reduced the activity of isocitrate dehydrogenase(ICDH)and pyruvate dehydrogenase complexes(PDHC).Both medium and high doses of fructose increase catabolism and anabolism,and there are more cytokines and enzymes with significant changes.Furthermore,multiple cytokines and enzymes show strong relevance to metabolic regulation by altering the transcription and expression of enzymes in central carbon metabolic pathways.Therefore,excessive intake of fructose should be reduced to avoid excessive inflammatory responses,allergic reactions and autoimmune diseases.
基金supported by the National Key Research and Development Program of China(No.2023YFC 2909000)the National Natural Science Foundation of China(No.52174240)+4 种基金the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(No.2023A03003-2)the XingLiao Talent Program of Liaoning Province(No.XLYC2203167)the Excellent Youth Fund Project of Liaoning Natural Science Foundation(No.2023JH3/10200010)the Fundamental Research Funds for the Central Universities(No.N23011026)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-15).
文摘Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.
基金supported by the National Key Research and Development Program of China (Nos. 2019YFE03070000and 2019YFE03070003)National Natural Science Foundation of China (Nos. 11975265 and 11775258)+2 种基金Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228)the Open Fund of Magnetic Confinement Fusion Laboratory of Anhui Province (No. 2021AMF01001)Hefei Science Center,CAS(No. 2021HSC-KPRD001)。
文摘Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.
基金National Natural Science Foundation of China(Grant No.62073227)Liaoning Provincial Science and Technology Department Foundation(Grant No.2023JH2/101300212).
文摘Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification.
基金supported by the Fundamental Research Funds for the Central Universities (No. N2101023)the National Key Research and Development Program of China(No. 2018YFC1901901902)+1 种基金the National Natural Science Foundation of China (Nos. 51904058, 52104247, 52130406)the Open Foundation of State Key Laboratory of Mineral Processing, China (No. BGRIMM-KJSKL-2020-17)。
文摘提出一种难选石煤在空气气氛下悬浮焙烧-酸浸强化的提钒新技术。在焙烧温度为800℃、焙烧时间为20 min、气体流量为400 m L/min的条件下钒的浸出率从过去的20%提高到目前技术的47.14%。在焙烧过程中,石煤表面逐渐变得粗糙和不规则,颗粒比表面积增加,硅酸盐矿物的片状结构被破坏,促进了钒的释放。同时,石煤中的钒被氧化为V(Ⅴ)或V(Ⅳ)。结果表明,由于悬浮焙烧过程中钒的释放和转化,因此,其浸出率得到了提高。
基金supported by the National Natural Science Foundation of China,China[Grant No.32072274 and 31871848].
文摘NAC transcriptional regulators are crucial for tomato ripening.Virus-induced gene silencing(VIGS)of SNAC9(SlNAC19,Gene ID:101248665)affects tomato ripening,and SNAC9 is involved in ethylene and abscisic acid(ABA)metabolic pathways.However,the function of SNAC9 in pigment metabolism in tomatoes remains unclear.This work seeks to discover the mechanism of SNAC9 involvement in pigment metabolism during tomato ripening by establishing a SNAC9 knockout model using CRISPR/Cas9 technology.The results indicated that fruit ripening was delayed in knockout(KO)mutants,and SNAC9 mutation significantly affected carotenoid metabolism.The chlorophyll(Chl)degradation rate,total carotenoid content,and lycopene content decreased significantly in the mutants.The transformation rate of chloroplasts to chromoplasts in mutants was slower,which was related to the carotenoid content.Furthermore,SNAC9 changed the expression of critical genes(PSY1,PDS,CRTISO,Z-ISO,SGR1,DXS2,LCYE,LCYB,and CrtR-b2)involved in pigment metabolism in tomato ripening.SNAC9 knockout also altered the expression levels of critical genes involved in the biosynthesis of ethylene and ABA.Accordingly,SNAC9 regulated carotenoid metabolism by directly regulating PSY1,DXS2,SGR1,and CrtR-b2.This research provides a foundation for developing the tomato ripening network and precise tomato ripening regulation.
基金the financial support of Qinghai Provincial Science and Technology Department Basic Research Program (No.2020-ZJ-707) to carry out this research work。
文摘In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy.
基金funded and supported by the Youth Science and Technology Project of Henan Provincial Bureau of Geology and Mineral Resources,YDKQKC[2008]No.8.
文摘Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin.To study the sources of manganese(Mn),chromium(Cr),nickel(Ni),arsenic(As),cadmium(Cd)and lead(Pb)in Shaying River water,123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020,encompassing normal water period,dry season and wet season.The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater,industrial sewage wastewater,groundwater,mine water,and the heavy metal contributions from agricultural non-point source pollution.The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation,While Cr mainly is primarily sourced from urban sewage treatment plant effluents,coal washing wastewater,tannery wastewater,and industrial discharge related to metal processing and manufacturing.Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing.Cd primarily linked to industrial wastewater,particularly from machinery manufacturing and metal processing facilities,while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater.These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.
文摘Controlling fertility of rodent pests has become an effective means of controlling the population of grassland rodents in China. Recently, research has focused on how to select environmentally-friendly sterilants without pollution effects, and to realize sustainable control of pest rodent populations. Sterilants from plant extracts have been mainly selected. In this study, mice were used as the experimental subjects for research on the anti-fertility effects of plant extracts of shikonin and the anti-fertility mechanism of shikonin extract was determined. The mice were divided into four groups, including one control group and three experimental groups. There were three applications of shikonin extract in different concentrations (5 mg·kg<sup>-1</sup>, 20 mg·kg<sup>-1</sup> and 50 mg·kg<sup>-1</sup>). The mice gavage experiments indicated that a shikonin concentration of 50 mg·kg<sup>-1</sup> had the expected anti-fertility effects. Mice copulation experiments showed that the 50 mg·kg<sup>-1</sup> shikonin treatment had significant anti-fertility effects on both female-treatment and female-male-treatment groups. The results of the PCR analysis on the AgRP and ghrelin mRNA from female ovaries and male testicles indicated that shikonin could control mice reproduction by regulating the pituitary gonadal axis. Shikonin, as plant source sterile agent, would have more ideal effects for functioned both sexes sterility.
文摘Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead of incidenting it perpendicular. We have measured the negative refractive index, permeability and permittivity by using the S-parameter analysis. Furthermore, it is found out that negative refractive index, permeability and permittivity are dependent upon the width of the wire and the gap between resonators at near-infrared range. This work will be helpful for the fabrication and design of double negative metamaterials structure having negative permeability, permittivity and negative refractive index for in plane applications.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.
基金This work was supported by the National Key Research and Development Program of China(grant number 2017YFC0804700)the National Key Research and Development Program(2019YFC0810703)the National Natural Science Foundation of China(grant number 51874041).
文摘Safety issue of lithium-ion batteries(LIBs)such as fires and explosions is a significant challenge for their large scale applications.Considering the continuously increased battery energy density and wider large-scale battery pack applications,the possibility of LIBs fire significantly increases.Because of the fast burning and the easy re-ignition characteristics of LIBs,achieving an efficient and prompt LIBs fire suppression is critical for minimizing the fire hazards.Different from conventional fire hazards,the LIBs fire shows complicated and comprehensive characteristics,and an effective and suitable fire-extinguishing agent particularly designed for LIBs is highly desirable.Considerable efforts have been devoted to this topic,to the best of our knowledge,a comprehensive review on this regard is still rare.Moreover,in practice,a guidance for the design and selections of a proper fire-extinguishing agent for LIBs is urgently needed.Herein,the special mechanisms and characteristics for LIBs fire and the corresponding design principles for LIBs fire-extinguishing agent were introduced.It is revealed that a fire-extinguishing agent developed for LIBs fire will most likely need a high heat capacity,high wetting,low viscosity and low electrical conductivity.After a comprehensive comparison of these agents in terms of these performances,water-based fire-extinguishing agents show best.Several typical fire-extinguishing agents such as gaseous agents,dry powders,water-based and aerosol fire-extinguishing agents were then introduced,and their fire extinguishment mechanisms were presented.Finally,their effectiveness in suppressing the fire were summarized.Water-based fire-extinguishing agents possess high cooling capacity and excellent anti-reflash performance for the fire.We believe this review could shed light on developing an efficient fire-extinguishing agent particularly designed for LIBs.
基金financially supported by the National Natural Science Foundation of China (Nos.51904058,52174240)the Fundamental Research Funds for the Central Universities,China (No.2101023)。
文摘A technology for suspension magnetization roasting−magnetic separation was proposed to separate iron minerals for recovery.The optimum parameters were as follows:a roasting temperature of 650℃,a roasting time of 20 min,a CO concentration of 20%,and particles with a size less than 37μm accounting for 67.14%of the roasted product.The total iron content and iron recovery of the magnetic concentrate were 56.71%and 90.50%,respectively.The phase transformation,magnetic transition,and microstructure evolution were systematically characterized through iron chemical phase analysis,X-ray diffraction,vibrating sample magnetometry,X-ray photoelectron spectroscopy,and transmission electron microscopy.The results demonstrated the transformation of hematite to magnetite,with the iron content in magnetite increasing from 0.41%in the raw ore to 91.47%in the roasted product.
基金the National Natural Science Foundation of China(21503131 and 51711530162)the Shanghai Municipal Science and Technology Commission(19640770300)+2 种基金the Shanghai Engineering Research Center of New Materials and Application for Resources and Environment(18DZ2281400)the Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials(Shanghai)(19DZ2293100)the Engineering Research Center of Material Composition and Advanced Dispersion Technology,Ministry of Education。
文摘The pursuit of high energy density has promoted the development of high-performance lithium metal batteries.However,it faces a serious security problem.Ionic liquids have attracted great attention due to their high ionic conductivity,non-flammability,and the properties of promoting the formation of stable SEI films.Deeply understanding the problems existing in lithium metal batteries and the role of ionic liquids in them is of great significance for improving the performance of lithium metal batteries.This article reviews the effects of the molecular structure of ionic liquids on ionic conductivity,Li^(+)ion transference number,electrochemical stability window,and lithium metal anode/electrolyte interface,as well as the application of ionic liquids in Li-high voltage cathode batteries,Li-O_(2) batteries and Li-S batteries.The molecular design,composition and polymerization will be the main strategies for the future development of ionic liquid-based electrolytes for high performance lithium metal battery.