Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the dec...Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the deciding factors that drive students'perceived advantages in class to improve precision education and the teaching model.Methods:A mixed strategy of an existing flipped classroom(FC)and a case-based learning(CBL)model was conducted in a medical morphology curriculum for 575 postgraduate students.The subjective learning evaluation of the individuals(learning time,engagement,study interest and concentration,and professional integration)was collected and analyzed after FC-CBL model learning.Results:The results from the general evaluation showed promising results of the medical morphology in the FC-CBL model.Students felt more engaged by instructors in person and benefited in terms of time-saving,flexible arrangements,and professional improvement.Our study contributed to the FC-CBL model in Research Design in postgraduate training in 4 categories:1)advancing a guideline of precision teaching according to individual characteristics;2)revealing whether a learning background is needed for a Research Design course to guide setting up a preliminary course;3)understanding the perceived advantages and their interfaces;and 4)barriers and/or improvement to implement the FC-CBL model in the Research Design class,such as a richer description of e-learning and hands-on practice.Conclusion:Undertaking a FC-CBL combined model could be a useful addition to pedagogy for medical morphology learning in postgraduate training.展开更多
BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its me...BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.展开更多
Depression is a prevalent mental disorder that is associated with aging and contributes to increased mortality and morbidity.The overall prevalence of geriatric depression with clinically significant symptoms is curre...Depression is a prevalent mental disorder that is associated with aging and contributes to increased mortality and morbidity.The overall prevalence of geriatric depression with clinically significant symptoms is currently on the rise.Recent studies have demonstrated that altered expressions of long non-coding RNAs(lncRNAs)in the brain affect neurodevelopment and manifest modulating functions during the depression.However,most lncRNAs have not yet been studied.Herein,we analyzed the transcriptome of dysregulated lncRNAs to reveal their expressions in a mouse model exhibiting depressive-like behaviors,as well as their corresponding response following antidepressant fluoxetine treatment.A chronic unpredictable mild stress(CUMS)mouse model was applied.A sixweek fluoxetine intervention in CUMS-induced mice attenuated depressive-like behaviors.In addition,differential expression analysis of lncRNAs was performed following RNA-sequencing.A total of 282 lncRNAs(134 up-regulated and 148 down-regulated)were differentially expressed in CUMS-induced mice relative to non-stressed counterparts(P<0.05).Moreover,370 differentially expressed lncRNAs were identified in CUMS-induced mice after fluoxetine intervention.Gene Ontology(GO)analyses showed an association between significantly dysregulated lncRNAs and protein binding,oxygen binding,and transport activity,while the Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis indicated that these dysregulated lncRNAs might be involved in inflammatory response pathways.Fluoxetine effectively ameliorated the symptoms of depression in CUMS-induced mice by regulating the expression of lncRNAs in the hippocampus.The findings herein provide valuable insights into the potential mechanism underlying depression in elderly people.展开更多
The rise of artificial microstructures has made it possible to modulate propagation of various kinds of waves,such as light,sound and heat.Among them,the focusing effect is a modulation function of particular interest...The rise of artificial microstructures has made it possible to modulate propagation of various kinds of waves,such as light,sound and heat.Among them,the focusing effect is a modulation function of particular interest.We propose an atomic level triangular structure to realize the phonon focusing effect in single-layer graphene.In the positive incident direction,our phonon wave packet simulation results confirm that multiple features related to the phonon focusing effect can be controlled by adjusting the height of the triangular structure.More interestingly,a completed different focusing pattern and an enhanced energy transmission coefficient are found in the reverse incident direction.The detailed mode conversion physics is discussed based on the Fourier transform analysis on the spatial distribution of the phonon wave packet.Our study provides physical insights to achieving phonon focusing effect by designing atomic level microstructures.展开更多
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all...Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all the components of PANoptosis to be regulated simultaneously.PANoptosis provides a new way to study the regulation of cell death,in that different types of cell death may be regulated at the same time.To test whether PANoptosis exists in diseases other than infectious diseases,we chose cerebral ischemia/reperfusion injury as the research model,collected articles researching cerebral ischemia/reperfusion from three major databases,obtained the original research data from these articles by bibliometrics,data mining and other methods,then integrated and analyzed these data.We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion.In the cell model simulating ischemic brain injury,pyroptosis,apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons.Pyroptosis,apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury.This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.展开更多
BACKGROUND Liver fibrosis is a refractory disease whose persistence can eventually induce cirrhosis or even liver cancer.Early liver fibrosis is reversible by intervention.As a member of the transforming growth factor...BACKGROUND Liver fibrosis is a refractory disease whose persistence can eventually induce cirrhosis or even liver cancer.Early liver fibrosis is reversible by intervention.As a member of the transforming growth factor-beta(TGF-β)superfamily,bone morphogenetic protein 7(BMP7)has anti-liver fibrosis functions.However,little is known about BMP7 expression changes and its potential regulatory mechanism as well as the relationship between BMP7 and TGF-βduring liver fibrosis.In addition,the mechanism underlying the anti-liver fibrosis function of BMP7 needs to be further explored.AIM To investigate changes in the dynamic expression of BMP7 during liver fibrosis,interactions between BMP7 and TGF-β1,and possible mechanisms underlying the anti-liver fibrosis function of BMP7.METHODS Changes in BMP7 expression during liver fibrosis and the interaction between BMP7 and TGF-β1 in mice were observed.Exogenous BMP7 was used to treat mouse primary hepatic stellate cells(HSCs)to observe its effect on activation,migration,and proliferation of HSCs and explore the possible mechanism underlying the anti-liver fibrosis function of BMP7.Mice with liver fibrosis received exogenous BMP7 intervention to observe improvement of liver fibrosis by using Masson’s trichrome staining and detecting the expression of the HSC activation indicator alpha-smooth muscle actin(α-SMA)and the collagen formation associated protein type I collagen(Col I).Changes in the dynamic expression of BMP7 during liver fibrosis in the human body were further observed.RESULTS In the process of liver fibrosis induced by carbon tetrachloride(CCl4)in mice,BMP7 protein expression first increased,followed by a decrease;there was a similar trend in the human body.This process was accompanied by a sustained increase in TGF-β1 protein expression.In vitro experiment results showed that TGF-β1 inhibited BMP7 expression in a time-and dose-dependent manner.In contrast,high doses of exogenous BMP7 inhibited TGF-β1-induced activation,migration,and proliferation of HSCs;this inhibitory effect was associated with upregulation of pSmad1/5/8 and downregulation of phosphorylation of Smad3 and p38 by BMP7.In vivo experiment results showed that exogenous BMP7 improved liver fibrosis in mice.CONCLUSION During liver fibrosis,BMP7 protein expression first increases and then decreases.This changing trend is associated with inhibition of BMP7 expression by sustained upregulation of TGF-β1 in a time-and dose-dependent manner.Exogenous BMP7 could selectively regulate TGF-β/Smad pathway-associated factors to inhibit activation,migration,and proliferation of HSCs and exert antiliver fibrosis functions.Exogenous BMP7 has the potential to be used as an antiliver fibrosis drug.展开更多
Although the role of oxidative stress in maternal aging and infertility has been suggested, the underlying mechanisms are not fully understood. The present study is designed to determine the relationship between mitoc...Although the role of oxidative stress in maternal aging and infertility has been suggested, the underlying mechanisms are not fully understood. The present study is designed to determine the relationship between mitochondrial function and spindle stability in metaphase II (MII) oocytes under oxidative stress. MII mouse oocytes were treated with H2O2 in the presence or absence of permeability transition pores (PTPs) blockers cyclosporin A (CsA). In addition, antioxidant N-acetylcysteine (NAC), F0/F1 synthase inhibitor oligomycin A, the mitochondria uncoupler carbonyl cyanide 4-trifluoro- methoxyphenylhydrazone (FCCP) or thapsigargin plus 2.5 mM Ca^2+ (Th+2.5 mM Ca^2+) were used in mechanistic studies. Morphologic analyses of oocyte spindles and chromosomes were performed and mitochondrial membrane potential (AWm), cytoplasmic free calcium concentration ([Ca^2+]c) and cytoplasmic ATP content within oocytes were also assayed. In a time- and H202 dose-dependent manner, disruption of meiotic spindles was found after oocytes were treated with H202, which was prevented by pre-treatment with NAC. Administration of H2O2 led to a dissipation of AWm, an increase in [Ca^2+]c and a decrease in cytoplasmic ATP levels. These detrimental responses of oocytes to H2O2 treatment could be blocked by pre-incubation with CsA. Similar to H2O2, both oligomycin A and FCCP dissipated AWm, decreased cytoplasmic ATP contents and disassembled MII oocyte spindles, while high [Ca^2+]c alone had no effects on spindle morphology. In conclusion, the decrease in mitochondria-derived ATP during oxidative stress may cause a disassembly of mouse MII oocyte spindles, presumably due to the opening of the mitochondrial PTPs.展开更多
There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by env...There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosisrelated publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.展开更多
We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain lengt...We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.展开更多
The influences of different design factors,as well as dummy posture,on an occupants' knee slider compression,were studied in this paper.Based on the vehicle geometry data,the simulation model,including both the mu...The influences of different design factors,as well as dummy posture,on an occupants' knee slider compression,were studied in this paper.Based on the vehicle geometry data,the simulation model,including both the multi-rigid-body and finite element(FE)part,was built up and validated with China New Car Assessment Program(C-NCAP)full impact to ensure the accuracy of the model.By adjusting the design parameters and the posture of the femur and lower leg,different factors affecting the passengers' knee slider compression were evaluated,with the help of MAthematical DYnamic MOdel(MADYMO)simulations.The study indicated that the leg posture,the stiffness of the IP and angles of the carpet have significant effects on the knee slider compression in this case.By decreasing the angle between the femur and lower leg from 133° to 124°,the maximum knee slider compression was decreased by 17.3% and by scaling the IP stiffness from 1 to 0.7,it could be decreased by 18.6%.Also,decreasing the angles of the carpet from 28° to 37°can help reduce the knee slider compression by 18.3%.展开更多
Etoposide,a DNA damage-inducing agent,is widely used for malignant tumors.However,insufficient solubility,poor bioavailability and adverse events limited the treatment outcomes and prognosis.To address this,we here de...Etoposide,a DNA damage-inducing agent,is widely used for malignant tumors.However,insufficient solubility,poor bioavailability and adverse events limited the treatment outcomes and prognosis.To address this,we here developed a novel biosynthetic and unfolded protein nanocarrier to load and deliver Etoposide.Compared with the pristine agent,the loading efficiency of the nanoformulated drug increased four times and the half-life time increased to 17.6 h with controlled release of the Etoposide for 6 days.The half-maximal inhibitory concentration at 48 h was lower than that at 24 h,suggesting a long-acting anti-tumor property.Moreover,the anti-tumor performance in rat models was significantly enhanced by improving solubility and cellular internalization.Additionally,immunogenicity and adverse toxicologic effects such as kidney and liver toxicity were significantly weakened.Therefore,the assembly strategy enables etoposide with higher efficacy,bioavailability,and safety,and has great potential in the comprehensive treatment of malignant tumors.展开更多
Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder,which can greatly limit their applications in heat dissipation.In this work,we unveil that ...Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder,which can greatly limit their applications in heat dissipation.In this work,we unveil that the carbon honeycomb structures which have high in-plane thermal conductivity simultaneously possess high axial thermal conductivity.Based on non-equilibrium molecular dynamics simulations,we find that the intrinsic axial thermal conductivity of carbon honeycomb structure reaches 746 W·m^(-1)·K^(-1)at room temperature,comparable to that of good heat dissipation materials such as hexagonal boron nitride.By comparing the phonon transmission spectrum between carbon honeycombs and few layer graphene,the physical mechanism responsible for the high axial thermal conductivity of carbon honeycombs is discussed.More importantly,our simulation results further demonstrate that the high axial thermal conductivity of carbon honeycomb structure is robust to the structural disorder,which is a common issue during the mass production of the carbon honeycomb structure.Our study suggests that the carbon honeycomb structure has unique advantages to serve as the thermal management material for practical applications.展开更多
Cellular collective motion in confluent epithelial monolayers is involved in many processes such as embryo development,carcinoma invasion,and wound healing.The development of new chemical strategies to achieve largesc...Cellular collective motion in confluent epithelial monolayers is involved in many processes such as embryo development,carcinoma invasion,and wound healing.The development of new chemical strategies to achieve largescale control of cells’collective motion is essential for biomedical applications.Here a series of DNA nanostructures with different dimensions were synthesized and their influences on cells’collective migration and packing behaviors in epithelial monolayers were investigated.We found that the framed DNA nanoassemblies effectively reduced the cells’speed by increasing the rigidity of cells,while the lipid-DNA micelles had a more pronounced effect on cells’projection area and shape factor.These DNA nanostructures all significantly enhanced the dependence of cells’speed on their shape factor.Our results indicate that cells’mobility in monolayers can be manipulated by chemical intercellular interactions without any genetic intervention.This may provide a new chemical strategy for tissue engineering and tumor therapy.展开更多
Zwitterionic Gemini surfactants have the Gemini molecular structure in which there are both multiple lipophilic groups and multiple hydrophilic groups.However,their hydrophilic groups have different charges.Due to the...Zwitterionic Gemini surfactants have the Gemini molecular structure in which there are both multiple lipophilic groups and multiple hydrophilic groups.However,their hydrophilic groups have different charges.Due to the special molecular structure,this kind of surfactants possesses excellent properties,including high surface activities,isoelectric point(IP),low critical micelle concentration(CMC),less toxicity,low irritating,biodegradability,bioactive,interface modification,and so on.In this review,synthetic strategies of three kinds of zwitterionic Gemini surfactants,i.e.,an ioniccationic,cationic-nonionic and anionic-nonionic Gemini surfactants,are discussed,and their potential applications in life sciences,chemical industry and enhanced oil recovery(EOR)are illustrated.Their future development is also prospected.展开更多
Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information o...Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information of the brain. In addition, efficient diagnosis technology is also needed to treat brain disease. Rare-earth based materials possess unique optical properties, superior magnetism, and high X-ray absorption abilities, enabling high-resolution imaging of the brain through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. In addition, rare-earth based materials can be used to detect, treat, and regulate of brain diseases through fine modulation of their structures and functions. Importantly, rare-earth based materials coupled with biomolecules such as antibodies, peptides, and drugs can overcome the blood-brain barrier and be used for targeted treatment. Herein, this review highlights the rational design and application of rare-earth based materials in brain imaging, therapy, monitoring, and neuromodulation. Furthermore, the development prospect of rare-earth based materials is briefly introduced.展开更多
Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome (HFRS) in humans. 133 integrins, including αvβ3 and αⅡbβ3 integrins, act as receptors on endothelial cells and play...Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome (HFRS) in humans. 133 integrins, including αvβ3 and αⅡbβ3 integrins, act as receptors on endothelial cells and play key roles in cellular entry during the pathogenesis of hantaviruses. Previous study demonstrated that the polymorphisms of integrin αⅡbβ3 are associated with susceptibility to hantavirus infection and the disease severity of HFRS in Shaanxi Province of China, rather than in Finland. However, the polymorphisms of integrin av133 in patients with HFRS was incompletely understood. Here, we aimed to investigate the associations between polymorphisms in human integrin αvβ3 and HFRS in Han Chinese individuals. Ninety patients with HFRS and 101 healthy controls were enrolled in this study. Analysis of five single nucleotide polymorphism (SNP) sites (rs3768777 and rs3738919 on ITGAV; rs13306487, rs5921, and rs5918 on ITGB3) was performed by TaqMan SNP genotyping assays and bi-directional PCR allele-specific amplification method. No significant differences were observed between the HFRS group and controls regarding the genotype and allele frequency distributions of any of the five SNP sites, and no associations were found between ITGAV polymorphisms/genotypes and disease severity. In conclusion, our results implied that these five SNPs in the integrin αvβ3 gene were not associated with HFRS susceptibility or severity in Han Chinese individuals in Hubei Province.展开更多
Combination products with a wide range of clinical applications represent a unique class of medical products that are composed of more than a singular medical device or drug/biological product.The product research and...Combination products with a wide range of clinical applications represent a unique class of medical products that are composed of more than a singular medical device or drug/biological product.The product research and development,clinical translation as well as regulatory evaluation of combination products are complex and challenging.This review firstly introduced the origin,definition and designation of combination products.Key areas of systematic regulatory review on the safety and efficacy of device-led/supervised combination products were then presented.Preclinical and clinical evaluation of combination products was discussed.Lastly,the research prospect of regulatory science for combination products was described.New tools of computational modeling and simulation,novel technologies such as artificial intelligence,needs of developing new standards,evidence-based research methods,new approaches including the designation of innovative or breakthrough medical products have been developed and could be used to assess the safety,efficacy,quality and performance of combination products.Taken together,the fast development of combination products with great potentials in healthcare provides new opportunities for the advancement of regulatory review as well as regulatory science.展开更多
基金supported by grants from the Hunan Province Academic Degree and Graduate Education Reform Project(No.2020JGYB028)the National Natural Science Foundation of China(No.81971891,No.82172196,No.81772134)+1 种基金the Key Laboratory of Emergency and Trauma(Hainan Medical University)of the Ministry of Education(No.KLET-202108)the College Students'Innovation and Entrepreneurship Project(No.S20210026020013).
文摘Objective:The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences.This study aimed to determine the deciding factors that drive students'perceived advantages in class to improve precision education and the teaching model.Methods:A mixed strategy of an existing flipped classroom(FC)and a case-based learning(CBL)model was conducted in a medical morphology curriculum for 575 postgraduate students.The subjective learning evaluation of the individuals(learning time,engagement,study interest and concentration,and professional integration)was collected and analyzed after FC-CBL model learning.Results:The results from the general evaluation showed promising results of the medical morphology in the FC-CBL model.Students felt more engaged by instructors in person and benefited in terms of time-saving,flexible arrangements,and professional improvement.Our study contributed to the FC-CBL model in Research Design in postgraduate training in 4 categories:1)advancing a guideline of precision teaching according to individual characteristics;2)revealing whether a learning background is needed for a Research Design course to guide setting up a preliminary course;3)understanding the perceived advantages and their interfaces;and 4)barriers and/or improvement to implement the FC-CBL model in the Research Design class,such as a richer description of e-learning and hands-on practice.Conclusion:Undertaking a FC-CBL combined model could be a useful addition to pedagogy for medical morphology learning in postgraduate training.
基金Supported by the National Natural Science Foundation of China,No.81570543 and No.81560104
文摘BACKGROUND Massive hepatocyte death is the core event in acute liver failure(ALF).Gasdermin D(GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death.However,the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot.GSDMD short hairpin RNA(shRNA)was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1(MCP1)and its receptor CC chemokine receptor-2(CCR2)in vitro.For in vivo experiments,we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide(D-Galn/LPS)-induced ALF mouse model.RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly.The level of GSDMD-N protein increased most obviously(P<0.001).In vitro,downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins(P<0.01).In vivo,GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of DGaln/LPS-induced ALF mice(P<0.001).Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin(IL)-1βand IL-18,GSDMDmediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death.However,this pathological process was inhibited after knocking down GSDMD.CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF,recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses.GSDMD knockout can reduce hepatocyte death and inflammatory responses,thus alleviating ALF.
基金This work was supported by the Scientific Research Projects of Universities in Inner Mongolia Autonomous Region(NJZY111)Natural Scientific Research Projects of Inner Mongolia Autonomous Region(2020MS03060)We thank Elsevier Ltd.,UK and FreeScience,China for their assistance in English editing of the manuscript.
文摘Depression is a prevalent mental disorder that is associated with aging and contributes to increased mortality and morbidity.The overall prevalence of geriatric depression with clinically significant symptoms is currently on the rise.Recent studies have demonstrated that altered expressions of long non-coding RNAs(lncRNAs)in the brain affect neurodevelopment and manifest modulating functions during the depression.However,most lncRNAs have not yet been studied.Herein,we analyzed the transcriptome of dysregulated lncRNAs to reveal their expressions in a mouse model exhibiting depressive-like behaviors,as well as their corresponding response following antidepressant fluoxetine treatment.A chronic unpredictable mild stress(CUMS)mouse model was applied.A sixweek fluoxetine intervention in CUMS-induced mice attenuated depressive-like behaviors.In addition,differential expression analysis of lncRNAs was performed following RNA-sequencing.A total of 282 lncRNAs(134 up-regulated and 148 down-regulated)were differentially expressed in CUMS-induced mice relative to non-stressed counterparts(P<0.05).Moreover,370 differentially expressed lncRNAs were identified in CUMS-induced mice after fluoxetine intervention.Gene Ontology(GO)analyses showed an association between significantly dysregulated lncRNAs and protein binding,oxygen binding,and transport activity,while the Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis indicated that these dysregulated lncRNAs might be involved in inflammatory response pathways.Fluoxetine effectively ameliorated the symptoms of depression in CUMS-induced mice by regulating the expression of lncRNAs in the hippocampus.The findings herein provide valuable insights into the potential mechanism underlying depression in elderly people.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075168 and 11890703)the Science and Technology Commission of Shanghai Municipality(Grant No.21JC1405600)the Fundamental Research Funds for the Central Universities(Grant No.22120230212)。
文摘The rise of artificial microstructures has made it possible to modulate propagation of various kinds of waves,such as light,sound and heat.Among them,the focusing effect is a modulation function of particular interest.We propose an atomic level triangular structure to realize the phonon focusing effect in single-layer graphene.In the positive incident direction,our phonon wave packet simulation results confirm that multiple features related to the phonon focusing effect can be controlled by adjusting the height of the triangular structure.More interestingly,a completed different focusing pattern and an enhanced energy transmission coefficient are found in the reverse incident direction.The detailed mode conversion physics is discussed based on the Fourier transform analysis on the spatial distribution of the phonon wave packet.Our study provides physical insights to achieving phonon focusing effect by designing atomic level microstructures.
基金supported by the National Natural Science Foundation of China,Nos.81772134(to KX),81971891(to KX),82172196(to KX),81571939(to KX)the Fundamental Research Funds for the Central Universities of Central South University of China,No.2020zzts218,(to WTY)Hunan Provincial Innovation Foundation For Postgraduate of China,Nos.CX20200116(to WTY),CX20190139(to LSL).
文摘Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis,apoptosis and necroptosis act in consort in a multimeric protein complex,PANoptosome.This allows all the components of PANoptosis to be regulated simultaneously.PANoptosis provides a new way to study the regulation of cell death,in that different types of cell death may be regulated at the same time.To test whether PANoptosis exists in diseases other than infectious diseases,we chose cerebral ischemia/reperfusion injury as the research model,collected articles researching cerebral ischemia/reperfusion from three major databases,obtained the original research data from these articles by bibliometrics,data mining and other methods,then integrated and analyzed these data.We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion.In the cell model simulating ischemic brain injury,pyroptosis,apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons.Pyroptosis,apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury.This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
基金Supported by the National Natural Science Foundation of China,No.81560104 and No.81860115
文摘BACKGROUND Liver fibrosis is a refractory disease whose persistence can eventually induce cirrhosis or even liver cancer.Early liver fibrosis is reversible by intervention.As a member of the transforming growth factor-beta(TGF-β)superfamily,bone morphogenetic protein 7(BMP7)has anti-liver fibrosis functions.However,little is known about BMP7 expression changes and its potential regulatory mechanism as well as the relationship between BMP7 and TGF-βduring liver fibrosis.In addition,the mechanism underlying the anti-liver fibrosis function of BMP7 needs to be further explored.AIM To investigate changes in the dynamic expression of BMP7 during liver fibrosis,interactions between BMP7 and TGF-β1,and possible mechanisms underlying the anti-liver fibrosis function of BMP7.METHODS Changes in BMP7 expression during liver fibrosis and the interaction between BMP7 and TGF-β1 in mice were observed.Exogenous BMP7 was used to treat mouse primary hepatic stellate cells(HSCs)to observe its effect on activation,migration,and proliferation of HSCs and explore the possible mechanism underlying the anti-liver fibrosis function of BMP7.Mice with liver fibrosis received exogenous BMP7 intervention to observe improvement of liver fibrosis by using Masson’s trichrome staining and detecting the expression of the HSC activation indicator alpha-smooth muscle actin(α-SMA)and the collagen formation associated protein type I collagen(Col I).Changes in the dynamic expression of BMP7 during liver fibrosis in the human body were further observed.RESULTS In the process of liver fibrosis induced by carbon tetrachloride(CCl4)in mice,BMP7 protein expression first increased,followed by a decrease;there was a similar trend in the human body.This process was accompanied by a sustained increase in TGF-β1 protein expression.In vitro experiment results showed that TGF-β1 inhibited BMP7 expression in a time-and dose-dependent manner.In contrast,high doses of exogenous BMP7 inhibited TGF-β1-induced activation,migration,and proliferation of HSCs;this inhibitory effect was associated with upregulation of pSmad1/5/8 and downregulation of phosphorylation of Smad3 and p38 by BMP7.In vivo experiment results showed that exogenous BMP7 improved liver fibrosis in mice.CONCLUSION During liver fibrosis,BMP7 protein expression first increases and then decreases.This changing trend is associated with inhibition of BMP7 expression by sustained upregulation of TGF-β1 in a time-and dose-dependent manner.Exogenous BMP7 could selectively regulate TGF-β/Smad pathway-associated factors to inhibit activation,migration,and proliferation of HSCs and exert antiliver fibrosis functions.Exogenous BMP7 has the potential to be used as an antiliver fibrosis drug.
文摘Although the role of oxidative stress in maternal aging and infertility has been suggested, the underlying mechanisms are not fully understood. The present study is designed to determine the relationship between mitochondrial function and spindle stability in metaphase II (MII) oocytes under oxidative stress. MII mouse oocytes were treated with H2O2 in the presence or absence of permeability transition pores (PTPs) blockers cyclosporin A (CsA). In addition, antioxidant N-acetylcysteine (NAC), F0/F1 synthase inhibitor oligomycin A, the mitochondria uncoupler carbonyl cyanide 4-trifluoro- methoxyphenylhydrazone (FCCP) or thapsigargin plus 2.5 mM Ca^2+ (Th+2.5 mM Ca^2+) were used in mechanistic studies. Morphologic analyses of oocyte spindles and chromosomes were performed and mitochondrial membrane potential (AWm), cytoplasmic free calcium concentration ([Ca^2+]c) and cytoplasmic ATP content within oocytes were also assayed. In a time- and H202 dose-dependent manner, disruption of meiotic spindles was found after oocytes were treated with H202, which was prevented by pre-treatment with NAC. Administration of H2O2 led to a dissipation of AWm, an increase in [Ca^2+]c and a decrease in cytoplasmic ATP levels. These detrimental responses of oocytes to H2O2 treatment could be blocked by pre-incubation with CsA. Similar to H2O2, both oligomycin A and FCCP dissipated AWm, decreased cytoplasmic ATP contents and disassembled MII oocyte spindles, while high [Ca^2+]c alone had no effects on spindle morphology. In conclusion, the decrease in mitochondria-derived ATP during oxidative stress may cause a disassembly of mouse MII oocyte spindles, presumably due to the opening of the mitochondrial PTPs.
基金supported by the National Natural Science Foundation of China,Nos. 81772134,81971891,and 81571939 (to KX)the Key Research and Development Program of Hunan Province of China,No. 2018SK2091 (to KX)+3 种基金Hunan Provincial Innovation Foundation For Postgraduate,No. CX20200116 (to WTY)Wu Jie Ping Medical Foundation of the Minister of Health of China,No. 320.6750.14118 (to KX)Foundation of Science and Technology of Hunan Province of China,No. 2018JJ2552 (to YC)the Project of Graduate Independent Exploration and Innovation Plan of Central South University of China,No. 2020zzts218 (to WTY)。
文摘There are two types of cell death-apoptosis and necrosis. Apoptosis is cell death regulated by cell signaling pathways, while necrosis has until recently been considered a passive mechanism of cell death caused by environmental pressures. However, recent studies show that necrosis can also be regulated by specific cell signaling pathways. This mode of death, termed necroptosis, has been found to be related to the occurrence and development of many diseases. We used bibliometrics to analyze the global output of literature on necroptosis in the field of neuroscience published in the period 2007–2019 to identify research hotspots and prospects. We included 145 necroptosisrelated publications and 2239 references published in the Web of Science during 2007–2019. Visualization analysis revealed that the number of publications related to necroptosis has increased year by year, reaching a peak in 2019. China is the country with the largest number of publications. Key word and literature analyses demonstrated that mitochondrial function change, stroke, ischemia/reperfusion and neuroinflammation are likely the research hotspots and future directions of necroptosis research in the nervous system. The relationship between immune response-related factors, damage-associated molecular patterns, pathogen-associated molecular patterns and necroptosis may become a potential research hotspot in the future. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of necroptosis in the field of neuroscience.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504418)China Scholarship Council Scholarship Program(Grant No.201706425053)the Fundamental Research Funds for the Central Universities of China(Grant No.2015XKMS075)
文摘We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.
基金Supported by the National Natural Science Foundation of China(51405050)Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,Ministry of Education(2016KLMT03)Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1500912)
文摘The influences of different design factors,as well as dummy posture,on an occupants' knee slider compression,were studied in this paper.Based on the vehicle geometry data,the simulation model,including both the multi-rigid-body and finite element(FE)part,was built up and validated with China New Car Assessment Program(C-NCAP)full impact to ensure the accuracy of the model.By adjusting the design parameters and the posture of the femur and lower leg,different factors affecting the passengers' knee slider compression were evaluated,with the help of MAthematical DYnamic MOdel(MADYMO)simulations.The study indicated that the leg posture,the stiffness of the IP and angles of the carpet have significant effects on the knee slider compression in this case.By decreasing the angle between the femur and lower leg from 133° to 124°,the maximum knee slider compression was decreased by 17.3% and by scaling the IP stiffness from 1 to 0.7,it could be decreased by 18.6%.Also,decreasing the angles of the carpet from 28° to 37°can help reduce the knee slider compression by 18.3%.
基金supported by the National Key R&D Program of China(Nos.2020YFA0712102,2018YFA0902600,2021YFF0701800,2020YFA0211100)the National Natural Science Foundation of China(Nos.52222214,22020102003,22125701,21907088,51922077,51872205)+3 种基金the Youth Innovation Promotion Association of CAS(No.2020228)Natural Science Foundation of Jilin Province(No.20210101366JC)the Foundation of National Facility for Translational Medicine(Shanghai)(No.TMSK-2020-012)All animal experiments were conducted in compliance with the Animal Management Rules of the Ministry of Health of the People’s Republic of China and with the approval of the Institutional Animal Care and Use Committee of the Animal Experiment Center of Peking University(No.LA2019313).
文摘Etoposide,a DNA damage-inducing agent,is widely used for malignant tumors.However,insufficient solubility,poor bioavailability and adverse events limited the treatment outcomes and prognosis.To address this,we here developed a novel biosynthetic and unfolded protein nanocarrier to load and deliver Etoposide.Compared with the pristine agent,the loading efficiency of the nanoformulated drug increased four times and the half-life time increased to 17.6 h with controlled release of the Etoposide for 6 days.The half-maximal inhibitory concentration at 48 h was lower than that at 24 h,suggesting a long-acting anti-tumor property.Moreover,the anti-tumor performance in rat models was significantly enhanced by improving solubility and cellular internalization.Additionally,immunogenicity and adverse toxicologic effects such as kidney and liver toxicity were significantly weakened.Therefore,the assembly strategy enables etoposide with higher efficacy,bioavailability,and safety,and has great potential in the comprehensive treatment of malignant tumors.
基金financially supported by the grants from the National Natural Science Foundation of China(Nos.12075168 and 11890703)the Science and Technology Commission of Shanghai Municipality(No.21JC1405600)the Fundamental Research Funds for the Central Universities(No.22120220060)。
文摘Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder,which can greatly limit their applications in heat dissipation.In this work,we unveil that the carbon honeycomb structures which have high in-plane thermal conductivity simultaneously possess high axial thermal conductivity.Based on non-equilibrium molecular dynamics simulations,we find that the intrinsic axial thermal conductivity of carbon honeycomb structure reaches 746 W·m^(-1)·K^(-1)at room temperature,comparable to that of good heat dissipation materials such as hexagonal boron nitride.By comparing the phonon transmission spectrum between carbon honeycombs and few layer graphene,the physical mechanism responsible for the high axial thermal conductivity of carbon honeycombs is discussed.More importantly,our simulation results further demonstrate that the high axial thermal conductivity of carbon honeycomb structure is robust to the structural disorder,which is a common issue during the mass production of the carbon honeycomb structure.Our study suggests that the carbon honeycomb structure has unique advantages to serve as the thermal management material for practical applications.
基金the National Key Research and Development Program of China(2020YFA0908200,2018YFA0902600,2020YFA0712102,and 2020YFA0712102)the National Natural Science Foundation of China(12074407,11774394,22125701,21834007,and 21907088)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33000000)the Youth Innovation Promotion Association of CAS(2020228,2021007).
文摘Cellular collective motion in confluent epithelial monolayers is involved in many processes such as embryo development,carcinoma invasion,and wound healing.The development of new chemical strategies to achieve largescale control of cells’collective motion is essential for biomedical applications.Here a series of DNA nanostructures with different dimensions were synthesized and their influences on cells’collective migration and packing behaviors in epithelial monolayers were investigated.We found that the framed DNA nanoassemblies effectively reduced the cells’speed by increasing the rigidity of cells,while the lipid-DNA micelles had a more pronounced effect on cells’projection area and shape factor.These DNA nanostructures all significantly enhanced the dependence of cells’speed on their shape factor.Our results indicate that cells’mobility in monolayers can be manipulated by chemical intercellular interactions without any genetic intervention.This may provide a new chemical strategy for tissue engineering and tumor therapy.
文摘Zwitterionic Gemini surfactants have the Gemini molecular structure in which there are both multiple lipophilic groups and multiple hydrophilic groups.However,their hydrophilic groups have different charges.Due to the special molecular structure,this kind of surfactants possesses excellent properties,including high surface activities,isoelectric point(IP),low critical micelle concentration(CMC),less toxicity,low irritating,biodegradability,bioactive,interface modification,and so on.In this review,synthetic strategies of three kinds of zwitterionic Gemini surfactants,i.e.,an ioniccationic,cationic-nonionic and anionic-nonionic Gemini surfactants,are discussed,and their potential applications in life sciences,chemical industry and enhanced oil recovery(EOR)are illustrated.Their future development is also prospected.
基金the National Key R&D Program of China(2020YFA0908900,2021YFB3502300,and 2020YFA0712102)National Natural Science Foundation of China(Grant No.21834007,22020102003,22107097,21907088,and 22125701)+1 种基金Youth Innovation Promotion Association of CAS(Grant No.2020228,2021226)China Postdoctoral Science Foundation(2020M681055).
文摘Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information of the brain. In addition, efficient diagnosis technology is also needed to treat brain disease. Rare-earth based materials possess unique optical properties, superior magnetism, and high X-ray absorption abilities, enabling high-resolution imaging of the brain through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. In addition, rare-earth based materials can be used to detect, treat, and regulate of brain diseases through fine modulation of their structures and functions. Importantly, rare-earth based materials coupled with biomolecules such as antibodies, peptides, and drugs can overcome the blood-brain barrier and be used for targeted treatment. Herein, this review highlights the rational design and application of rare-earth based materials in brain imaging, therapy, monitoring, and neuromodulation. Furthermore, the development prospect of rare-earth based materials is briefly introduced.
基金supported by grants from the National Natural Science Foundation of China (grant nos. 81101258, 81000734, and 81271819)a grant from Hubei Province Health and Family Planning Scientific Research Project (grant no. WJ2015MB113)
文摘Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome (HFRS) in humans. 133 integrins, including αvβ3 and αⅡbβ3 integrins, act as receptors on endothelial cells and play key roles in cellular entry during the pathogenesis of hantaviruses. Previous study demonstrated that the polymorphisms of integrin αⅡbβ3 are associated with susceptibility to hantavirus infection and the disease severity of HFRS in Shaanxi Province of China, rather than in Finland. However, the polymorphisms of integrin av133 in patients with HFRS was incompletely understood. Here, we aimed to investigate the associations between polymorphisms in human integrin αvβ3 and HFRS in Han Chinese individuals. Ninety patients with HFRS and 101 healthy controls were enrolled in this study. Analysis of five single nucleotide polymorphism (SNP) sites (rs3768777 and rs3738919 on ITGAV; rs13306487, rs5921, and rs5918 on ITGB3) was performed by TaqMan SNP genotyping assays and bi-directional PCR allele-specific amplification method. No significant differences were observed between the HFRS group and controls regarding the genotype and allele frequency distributions of any of the five SNP sites, and no associations were found between ITGAV polymorphisms/genotypes and disease severity. In conclusion, our results implied that these five SNPs in the integrin αvβ3 gene were not associated with HFRS susceptibility or severity in Han Chinese individuals in Hubei Province.
基金supported by China’s Action Plan on Scientific Drug Administration(technical evaluation of drug-device combination products)National Natural Science Foundation of China(NSFC,No.32001002)+2 种基金National Key Research and Development Program of China(No.2017YFE0102600)Sichuan Major Science and Technology Project on Biotechnology and Medicine(No.2018SZDZX0018)Sichuan University Postdoctoral Interdisciplinary Innovation Startup Found.
文摘Combination products with a wide range of clinical applications represent a unique class of medical products that are composed of more than a singular medical device or drug/biological product.The product research and development,clinical translation as well as regulatory evaluation of combination products are complex and challenging.This review firstly introduced the origin,definition and designation of combination products.Key areas of systematic regulatory review on the safety and efficacy of device-led/supervised combination products were then presented.Preclinical and clinical evaluation of combination products was discussed.Lastly,the research prospect of regulatory science for combination products was described.New tools of computational modeling and simulation,novel technologies such as artificial intelligence,needs of developing new standards,evidence-based research methods,new approaches including the designation of innovative or breakthrough medical products have been developed and could be used to assess the safety,efficacy,quality and performance of combination products.Taken together,the fast development of combination products with great potentials in healthcare provides new opportunities for the advancement of regulatory review as well as regulatory science.