Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has b...Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.展开更多
We conduct a detailed analysis of an M1.3 limb flare occurring on 2017 July 3,which have the X-ray observations recorded by multiple hard X-ray telescopes,including Hard X-ray Modulation Telescope(Insight-HXMT),Ramaty...We conduct a detailed analysis of an M1.3 limb flare occurring on 2017 July 3,which have the X-ray observations recorded by multiple hard X-ray telescopes,including Hard X-ray Modulation Telescope(Insight-HXMT),Ramaty High Energy Solar Spectroscopic Imager(RHESSI),and the Fermi Gamma-ray Space Telescope(Fermi).Joint analysis has also used the extreme ultraviolet(EUV)imaging data from the Atmospheric Imaging Assembly(AIA)aboard the Solar Dynamic Observatory.The hard X-ray spectral and imaging evolution suggest a lower corona source,and the non-thermal broken power law distribution has a rather low break energy~15 keV.The EUV imaging shows a rather stable plasma configuration before the hard X-ray peak phase,and accompanied by a filament eruption during the hard X-ray flare peak phase.Hard X-ray image reconstruction from RHESSI data only shows one foot point source.We also determined the DEM for the peak phase by SDO/AIA data.The integrated EM beyond 10 MK at foot point onset after the peak phase,while the>10 MK source around reconnection site began to fade.The evolution of EM and hard X-ray source supports lower corona plasma heating after non-thermal energy dissipation.The combination of hard X-ray spectra and images during the limb flare provides the understanding on the interchange of non-thermal and thermal energies,and relation between lower corona heating and the upper corona instability.展开更多
Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conve...Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.展开更多
In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m...In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.展开更多
The Insight-Hard X-ray Modulation Telescope(Insight-HXMT) is a broadband X-ray and γ-ray(1-3000 ke V) astronomy satellite. One of its three main telescopes is the High Energy X-ray telescope(HE). The main detector pl...The Insight-Hard X-ray Modulation Telescope(Insight-HXMT) is a broadband X-ray and γ-ray(1-3000 ke V) astronomy satellite. One of its three main telescopes is the High Energy X-ray telescope(HE). The main detector plane of HE comprises 18 Na I(Tl)/Cs I(Na) phoswich detectors, where Na I(Tl) is used as the primary detector to measure ~ 20-250 ke V photons incident from the field of view(FOV) defined by collimators, and Cs I(Na) is used as the active shielding detector to Na I(Tl) by pulse shape discrimination. Additionally, Cs I(Na) is used as an omnidirectional γ-ray monitor. The HE collimators have a diverse FOV,i.e. 1.1°×5.7°(15 units), 5.7°×5.7°(2 units), and blocked(1 unit). Therefore, the combined FOV of HE is approximately5.7°×5.7°. Each HE detector has a diameter of 190 mm resulting in a total geometrical area of approximately 5100 cm2, and the energy resolution is ~15% at 60 ke V. For each recorded X-ray event by HE, the timing accuracy is less than 10 μs and the deadtime is less than 10 μs. HE is used for observing spectra and temporal variability of X-ray sources in the 20-250 ke V band either by pointing observations for known sources or scanning observations to unveil new sources. Additionally, HE is used for monitoring the γ-ray burst in 0.2-3 Me V band. This paper not only presents the design and performance of HE instruments but also reports results of the on-ground calibration experiments.展开更多
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundament...Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (M000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (TOO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (-10-7 to 104 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.展开更多
The Low Energy X-ray telescope(LE) is one of the three main instruments of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT). It is equipped with Swept Charge Device(SCD) sensor arrays with a total geometrical...The Low Energy X-ray telescope(LE) is one of the three main instruments of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT). It is equipped with Swept Charge Device(SCD) sensor arrays with a total geometrical area of 384 cm^2 and an energy band from 0.7 to 13 ke V. In order to evaluate the particle induced X-ray background and the cosmic X-ray background simultaneously, LE adopts collimators to define four types of Field Of Views(FOVs), i.e., 1.6°×6°, 4°×6°, 50°-60°×2°-6 oand the blocked ones which block the X-ray by an aluminum cover. LE is constituted of three detector boxes(LEDs) and an electric control box(LEB) and achieves a good energy resolution of 140 e V@5.9 ke V, an excellent time resolution of 0.98 ms, as well as an extremely low pileup(<1%@18000 cts/s). Detailed performance tests and calibration on the ground have been performed,including energy-channel relation, energy response, detection efficiency and time response.展开更多
The Medium Energy X-ray telescope(ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope(Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive i...The Medium Energy X-ray telescope(ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope(Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 ke V with a total geometrical area of 952 cm^2. The application specific integrated circuit(ASIC) chip, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views(FOVs) for the telescope, 1°×4°, 4°×4°,and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components.The energy resolution of ME is ~3 ke V at 17.8 ke V(FWHM) and the time resolution is 255 μs. In this paper, we introduce the design and performance of ME.展开更多
This article provides a review on X-ray pulsar-based navigation(XNAV).The review starts with the basic concept of XNAV,and briefly introduces the past,present and future projects concerning XNAV.This paper focuses on ...This article provides a review on X-ray pulsar-based navigation(XNAV).The review starts with the basic concept of XNAV,and briefly introduces the past,present and future projects concerning XNAV.This paper focuses on the advances of the key techniques supporting XNAV,including the navigation pulsar database,the X-ray detection system,and the pulse time of arrival estimation.Moreover,the methods to improve the estimation performance of XNAV are reviewed.Finally,some remarks on the future development of XNAV are provided.展开更多
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be rep...In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.展开更多
The high energy cosmic-radiation detection(HERD)facility is a space mission designed for detecting cosmic ray(CR)electrons,γ-rays up to tens of TeV and CR nuclei from proton to iron up to several PeV.The main instrum...The high energy cosmic-radiation detection(HERD)facility is a space mission designed for detecting cosmic ray(CR)electrons,γ-rays up to tens of TeV and CR nuclei from proton to iron up to several PeV.The main instrument of HERD is a 3-D imaging calorimeter(CALO)composed of nearly ten thousand lutetium yttrium orthosilicate(LYSO,with cerium doping)crystal cubes.A large dynamic range of single HERD CALO Cell(HCC)is necessary to achieve HERD’s PeV observation objectives,which means that the response of HCC should maintain a good linearity from minimum ionizing particle(MIP)calibration to PeV shower maximum.In order to study the linearity ofHCC over such a large energy range,a beam test has been implemented at the E2 and E3 beam lines of BEPC.High intensity pulsed electron beam provided by E2 line is used for producing high energy density within HCC;π^(+)/proton provided by E3 line are used forHCCcalibration.The results showthat no saturation effect occurs and the linearity ofHCCis better than 10%from 30 MeV(1MIP)to 1.1×10^(3) TeV(energy density is 93 TeV/cm^(3)),which can meet the requirement mentioned above.展开更多
Introduction The medium-energy X-ray telescope(ME)is a collimated X-ray telescope onboard the Insight hard X-ray modulation telescope(Insight-HXMT)satellite.It has 1728 Si-PIN pixels readout using 54 low noise applica...Introduction The medium-energy X-ray telescope(ME)is a collimated X-ray telescope onboard the Insight hard X-ray modulation telescope(Insight-HXMT)satellite.It has 1728 Si-PIN pixels readout using 54 low noise application-specific integrated circuits(ASICs).ME covers the energy range of 5–30 keV and has a total detection area of 952cm2.The typical energy resolution of ME at the beginning of the mission is 3 keV at 17.8 keV(full width at half maximum,FWHM),and the time resolution is 255μs.In this study,we present the in-orbit performance of ME in its first 5 years of operation.Methods The performance of ME was monitored using onboard radioactive sources and astronomical X-ray objects.ME carries six 241Am radioactive sources for onboard calibration,which can continuously illuminate the calibration pixels.The long-term performance evolution of ME can be quantified using the properties of the accumulated spectra of the calibration pixels.In addition,observations of the Crab Nebula and the pulsar were used to check the long-term evolution of the detection efficiency as a function of energy.Conclusion After 5 years of operation,742cm2 of the Si-PIN pixelswere stillworking normally.The peak positions of 241Am emission lines gradually shifted to the high-energy region,implying a slow increase in ME gain of 1.43%.A comparison of the ME spectra of the Crab Nebula and the pulsar shows that the E–C relations and the redistribution matrix file are still acceptable for most data analysis works,and there is no detectable variation in the detection efficiency.展开更多
基金supported by the National Key R&D Program of China(2021YFA0718500)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)+1 种基金the National Natural Science Foundation of China(grant Nos.12173038 and U2038106)the National HEP Data Center(grant No.E029S2S1)。
文摘Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations.Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors.There are two major methods for this count distribution localization:χ^(2)minimization method and the Bayesian method.Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the χ^(2)method.With comprehensive simulations,we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than the χ^(2)method,especially for weak bursts.We further proposed a location-spectrum iteration approach based on the Bayesian inference,which could alleviate the problems caused by the spectral difference between the burst and location templates.Our method is very suitable for scenarios with limited computation resources or timesensitive applications,such as in-flight localization software,and low-latency localization for rapidly follow-up observations.
基金supported by the National Program on Key Research and Development Project(Grant Nos.2021YFA0718500 and 2021YFA0718503)the Fundamental Research Funds for the Central Universities(No.2042021kf0224)the National Natural Science Foundation of China(Grant Nos.12133007,U1838103 and 11622326)。
文摘We conduct a detailed analysis of an M1.3 limb flare occurring on 2017 July 3,which have the X-ray observations recorded by multiple hard X-ray telescopes,including Hard X-ray Modulation Telescope(Insight-HXMT),Ramaty High Energy Solar Spectroscopic Imager(RHESSI),and the Fermi Gamma-ray Space Telescope(Fermi).Joint analysis has also used the extreme ultraviolet(EUV)imaging data from the Atmospheric Imaging Assembly(AIA)aboard the Solar Dynamic Observatory.The hard X-ray spectral and imaging evolution suggest a lower corona source,and the non-thermal broken power law distribution has a rather low break energy~15 keV.The EUV imaging shows a rather stable plasma configuration before the hard X-ray peak phase,and accompanied by a filament eruption during the hard X-ray flare peak phase.Hard X-ray image reconstruction from RHESSI data only shows one foot point source.We also determined the DEM for the peak phase by SDO/AIA data.The integrated EM beyond 10 MK at foot point onset after the peak phase,while the>10 MK source around reconnection site began to fade.The evolution of EM and hard X-ray source supports lower corona plasma heating after non-thermal energy dissipation.The combination of hard X-ray spectra and images during the limb flare provides the understanding on the interchange of non-thermal and thermal energies,and relation between lower corona heating and the upper corona instability.
基金supported by the National Natural Science Foundation of China(51705470).
文摘Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)support by ASI, under the dedicated eXTP agreements and agreement ASI-INAF (Grant No. 2017-14-H.O.)+3 种基金by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft- und Raumfahrt, the German Aerospce Center (DLR)support of Science Centre (Grant No. 2013/10/M/ST9/00729)support from MINECO (Grant No. ESP2017-82674-R) and FEDER funds
文摘In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.
基金China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)the National Key Research and Development Program of China(Grant No.2016YFA0400800)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA04010202,XDA04010300,and XDB23040400).
文摘The Insight-Hard X-ray Modulation Telescope(Insight-HXMT) is a broadband X-ray and γ-ray(1-3000 ke V) astronomy satellite. One of its three main telescopes is the High Energy X-ray telescope(HE). The main detector plane of HE comprises 18 Na I(Tl)/Cs I(Na) phoswich detectors, where Na I(Tl) is used as the primary detector to measure ~ 20-250 ke V photons incident from the field of view(FOV) defined by collimators, and Cs I(Na) is used as the active shielding detector to Na I(Tl) by pulse shape discrimination. Additionally, Cs I(Na) is used as an omnidirectional γ-ray monitor. The HE collimators have a diverse FOV,i.e. 1.1°×5.7°(15 units), 5.7°×5.7°(2 units), and blocked(1 unit). Therefore, the combined FOV of HE is approximately5.7°×5.7°. Each HE detector has a diameter of 190 mm resulting in a total geometrical area of approximately 5100 cm2, and the energy resolution is ~15% at 60 ke V. For each recorded X-ray event by HE, the timing accuracy is less than 10 μs and the deadtime is less than 10 μs. HE is used for observing spectra and temporal variability of X-ray sources in the 20-250 ke V band either by pointing observations for known sources or scanning observations to unveil new sources. Additionally, HE is used for monitoring the γ-ray burst in 0.2-3 Me V band. This paper not only presents the design and performance of HE instruments but also reports results of the on-ground calibration experiments.
基金supported by the National Program on Key Research and Development Project(Grant No.2016YFA0400800)from the Ministry of Science and Technology of China(MOST)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23040400)the Hundred Talent Program of Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant Nos.11233001,11503027,11403026,11473027,and11733009)
文摘Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (M000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (TOO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (-10-7 to 104 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
基金the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA040102).
文摘The Low Energy X-ray telescope(LE) is one of the three main instruments of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT). It is equipped with Swept Charge Device(SCD) sensor arrays with a total geometrical area of 384 cm^2 and an energy band from 0.7 to 13 ke V. In order to evaluate the particle induced X-ray background and the cosmic X-ray background simultaneously, LE adopts collimators to define four types of Field Of Views(FOVs), i.e., 1.6°×6°, 4°×6°, 50°-60°×2°-6 oand the blocked ones which block the X-ray by an aluminum cover. LE is constituted of three detector boxes(LEDs) and an electric control box(LEB) and achieves a good energy resolution of 140 e V@5.9 ke V, an excellent time resolution of 0.98 ms, as well as an extremely low pileup(<1%@18000 cts/s). Detailed performance tests and calibration on the ground have been performed,including energy-channel relation, energy response, detection efficiency and time response.
基金the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA040102).
文摘The Medium Energy X-ray telescope(ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope(Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 ke V with a total geometrical area of 952 cm^2. The application specific integrated circuit(ASIC) chip, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views(FOVs) for the telescope, 1°×4°, 4°×4°,and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components.The energy resolution of ME is ~3 ke V at 17.8 ke V(FWHM) and the time resolution is 255 μs. In this paper, we introduce the design and performance of ME.
基金the National Natural Science Foundation of China(No.61703413)the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3078).
文摘This article provides a review on X-ray pulsar-based navigation(XNAV).The review starts with the basic concept of XNAV,and briefly introduces the past,present and future projects concerning XNAV.This paper focuses on the advances of the key techniques supporting XNAV,including the navigation pulsar database,the X-ray detection system,and the pulse time of arrival estimation.Moreover,the methods to improve the estimation performance of XNAV are reviewed.Finally,some remarks on the future development of XNAV are provided.
基金support from ERC Starting (Grant No. 639217 CSINEUTRONSTAR)support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship+2 种基金suported by the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Global Fellowship (Grant No. 703916)supported in part by the DFG through Grant SFB 1245 and the ERC (Grant No. 307986 STRONGINT)support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)
文摘In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.
基金This research was supported by National Natural Science Foundation of China,Grant No.11327303,11473028 and 11675196International Science and Technology Cooperation Program of China,Grant No.2015DFA10140+3 种基金Interdisciplinary Innovation Team Project of Chinese Academy of Sciences(Research Team of The High Energy cosmic-Radiation Detection)Qianren start-up,Grant No.292012312D1117210Strategic Pioneer Program in Space Science,Chinese Academy of Sciences,Grant No.XDA04075600Youth Innovation Promotion Association of CAS,Grant No.2014009.The authors would like to thank Dr.Sun Jianchao,Dr.Zhang Xuan,Dr.Zhang Xiaofeng and Dr.Ning Zhe for their support.
文摘The high energy cosmic-radiation detection(HERD)facility is a space mission designed for detecting cosmic ray(CR)electrons,γ-rays up to tens of TeV and CR nuclei from proton to iron up to several PeV.The main instrument of HERD is a 3-D imaging calorimeter(CALO)composed of nearly ten thousand lutetium yttrium orthosilicate(LYSO,with cerium doping)crystal cubes.A large dynamic range of single HERD CALO Cell(HCC)is necessary to achieve HERD’s PeV observation objectives,which means that the response of HCC should maintain a good linearity from minimum ionizing particle(MIP)calibration to PeV shower maximum.In order to study the linearity ofHCC over such a large energy range,a beam test has been implemented at the E2 and E3 beam lines of BEPC.High intensity pulsed electron beam provided by E2 line is used for producing high energy density within HCC;π^(+)/proton provided by E3 line are used forHCCcalibration.The results showthat no saturation effect occurs and the linearity ofHCCis better than 10%from 30 MeV(1MIP)to 1.1×10^(3) TeV(energy density is 93 TeV/cm^(3)),which can meet the requirement mentioned above.
基金support from the National Program on Key Research and Development Project(Grant No.2021YFA0718500)from the Ministry of Science and Technology of China(MOST)The authors thank supports from the National Natural Science Foundation of China under Grants 12273043,U1838201,U1838202,U1938109,U1938102,U1938108,and U2038109This work was partially supported by the International Partnership Program of the Chinese Academy of Sciences(Grant No.113111KYSB20190020).
文摘Introduction The medium-energy X-ray telescope(ME)is a collimated X-ray telescope onboard the Insight hard X-ray modulation telescope(Insight-HXMT)satellite.It has 1728 Si-PIN pixels readout using 54 low noise application-specific integrated circuits(ASICs).ME covers the energy range of 5–30 keV and has a total detection area of 952cm2.The typical energy resolution of ME at the beginning of the mission is 3 keV at 17.8 keV(full width at half maximum,FWHM),and the time resolution is 255μs.In this study,we present the in-orbit performance of ME in its first 5 years of operation.Methods The performance of ME was monitored using onboard radioactive sources and astronomical X-ray objects.ME carries six 241Am radioactive sources for onboard calibration,which can continuously illuminate the calibration pixels.The long-term performance evolution of ME can be quantified using the properties of the accumulated spectra of the calibration pixels.In addition,observations of the Crab Nebula and the pulsar were used to check the long-term evolution of the detection efficiency as a function of energy.Conclusion After 5 years of operation,742cm2 of the Si-PIN pixelswere stillworking normally.The peak positions of 241Am emission lines gradually shifted to the high-energy region,implying a slow increase in ME gain of 1.43%.A comparison of the ME spectra of the Crab Nebula and the pulsar shows that the E–C relations and the redistribution matrix file are still acceptable for most data analysis works,and there is no detectable variation in the detection efficiency.