Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for...Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.展开更多
Supercapacitors have emerged as a promising class of energy storage technologies,renowned for their impressive specifi c capacities and reliable cycling performance.These attributes are increasingly signifi cant amid ...Supercapacitors have emerged as a promising class of energy storage technologies,renowned for their impressive specifi c capacities and reliable cycling performance.These attributes are increasingly signifi cant amid the growing environmental challenges stemming from rapid global economic growth and increased fossil fuel consumption.The electrochemical performance of supercapacitors largely depends on the properties of the electrode materials used.Among these,iron-based sulfi de(IBS)materials have attracted signifi cant attention for use as anode materials owing to their high specifi c capacity,eco-friendliness,and cost-eff ectiveness.Despite these advantages,IBS electrode materials often face challenges such as poor electrical conductivity,compromised chemical stability,and large volume changes during charge–discharge cycles.This review article comprehensively examines recent research eff orts aiming at improving the performance of IBS materials,focusing on three main approaches:nanostructure design(including 0D nanoparticles,1D nanowires,2D nanosheets,and 3D structures),composite development(including carbonaceous materials,metal compounds,and polymers),and material defect engineering(through doping and vacancy introduction).The article sheds light on novel concepts and methodologies designed to address the inherent limitations of IBS electrode materials in supercapacitors.These conceptual frameworks and strategic interventions are expected to be applied to other nanomaterials,driving advancements in electrochemical energy conversion.展开更多
Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven ...Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven water splitting is limited by inefficient connections between functional modules,lack of highly active and stable electrocatalysts,and intermittent and unpredictable renewable energy supply.Herein,we construct a dualmodulated three-dimensional(3D)NiCo_(2)O_(4)@NiCo_(2)S_(4)(denoted as NCONCS)heterostructure deposited on nickel foam as a multifunctional electrode for electrocatalytic water splitting driven by photovoltaic-powered supercapacitors.Due to a stable 3D architecture configuration,abundant active sites,efficient charge transfer,and tuned interface properties,the NCONCS delivers a high specific capacity and rate performance for supercapacitors.A twoelectrode electrolyzer assembled with the NCONCS as both the anode and the cathode only requires a low cell voltage of 1.47 V to achieve a current density of 10 mA cm^(−2) in alkaline electrolyte,which outperforms the state-of-the-art bifunctional electrocatalysts.Theoretical calculations suggest that the generated heterointerfaces in NCONCS improve the surface binding capability of reaction intermediates while regulating the local electronic structures,which thus accelerates the reaction kinetics of water electrolysis.As a proof of concept,an integrated configuration comprising a two-electrode electrolyzer driven by two series-connected supercapacitors charged by a solar cell delivers a high product yield with superior durability.展开更多
Accurate species identification is a key component of biodiversity research.DNA barcoding is an effective molecular method used for fish species identification.We aimed to study the DNA barcoding of fish in Zhoushan c...Accurate species identification is a key component of biodiversity research.DNA barcoding is an effective molecular method used for fish species identification.We aimed to study the DNA barcoding of fish in Zhoushan coastal waters,explore the differences and applicability of two gene fragments(12S rRNA and COI)of DNA barcoding in fish species identification,and established a comprehensive fish barcoding reference database.Two hundred and eighty-seven captured fish samples from Zhoushan coastal waters were identified using morphological characteristics and DNA barcoding.A total of 26412S rRNA sequences(belonging to eight orders,31 families,55 genera,and 66 species)and 188 COI sequences(belonging to seven orders,30 families,48 genera,and 58 species)were obtained.The lengths of the 12S rRNA sequences ranged from 165 to 178 bp,and the guanine-cytosine(GC)content was 45.37%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.10%and 26.66%,respectively.The length of the COI sequence ranged 574–655 bp,and the content of GC was 45.97%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.16%and 27.45%,respectively.The minimum interspecific genetic distances of 12S rRNA and COI(1.23%and 1.86%)were both greater than their maximum intraspecific genetic distances(2.42%and 8.66%).Three molecular analyses(NJ tree,ABGD,and GMYC)were performed to accurately identify and delineate species.Clustering errors occurred when the 12S rRNA sequences were delimited using the NJ tree method,and the delimitation results of ABGD and GMYC are consistent with the final species identification results.Our results demonstrate that DNA barcoding based on 12S rRNA and COI can be used as an effective tool for fish species identification,and 12S rRNA has good application prospects in the environmental DNA(eDNA)metabarcoding of marine fish.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)offer high energy density,low cost,and are environmentally friendly,rendering them potential energy storage devices.However,dendrite growth on the zinc anode and numerous ...Rechargeable aqueous zinc-ion batteries(AZIBs)offer high energy density,low cost,and are environmentally friendly,rendering them potential energy storage devices.However,dendrite growth on the zinc anode and numerous side reac-tions during operation challenge their commercialization.Recent advancements have introduced various materials for the functionalization of zinc anodes.These developments effectively mitigate the performance degradation of zinc anode,enhancing both its cycle stability and the overall performance of AZIBs.Herein,the construction of functionalized zinc anodes is discussed,current materials(including organic,inorganic and their composites)for modified zinc anodes are categorized,and the protective mechanism behind functionalized zinc anodes is analyzed.The study concludes by outlining the characteristics of materials suitable for dendritic-free zinc anode construction and the prospects for future development directions of functionalized zinc anodes in AZIBs.展开更多
Designing a multifunctional separator with abundant ion migration paths is crucial for tuning the ion transport in rocking-chair-type batteries.Herein,a polydopamine-functionalized PVDF(PVDF@PDA)nanofibrous membrane i...Designing a multifunctional separator with abundant ion migration paths is crucial for tuning the ion transport in rocking-chair-type batteries.Herein,a polydopamine-functionalized PVDF(PVDF@PDA)nanofibrous membrane is designed to serve as a separator for aqueous zinc-ion batteries(AZIBs).The functional groups(OH and NH)in PDA facilitate the formation of Zn O and Zn N coordination bonds with Zn ions,homogenizing the Zn-ion flux and thus enabling dendrite-free Zn deposition.Moreover,the PVDF@PDA separator effectively inhibits the shuttling of V-species through the formation of V-O coordination bonds.As a result,the Zn/NH_(4)V_(4)O_(10) battery with the PVDF@PDA separator exhibits enhanced cycling stability(92.3%after 1000 cycles at 5 A g^(-1))and rate capability compared to that using a glass fiber separator.This work provides a new avenue to design functionalized separators for high-performance AZIBs.展开更多
Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electr...Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.展开更多
基金financially supported by National Natural Science Foundation of China(No.51872090,51772097)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)the financial support from Donghua University(101-08-0241022,23D210105,and 101-07-005759)。
文摘Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.
基金This work is supported by the National Natural Science Foundation of China(No.52378217)National Training Program of Innovation and Entrepreneurship for Undergraduates(No.202310611117).
文摘Supercapacitors have emerged as a promising class of energy storage technologies,renowned for their impressive specifi c capacities and reliable cycling performance.These attributes are increasingly signifi cant amid the growing environmental challenges stemming from rapid global economic growth and increased fossil fuel consumption.The electrochemical performance of supercapacitors largely depends on the properties of the electrode materials used.Among these,iron-based sulfi de(IBS)materials have attracted signifi cant attention for use as anode materials owing to their high specifi c capacity,eco-friendliness,and cost-eff ectiveness.Despite these advantages,IBS electrode materials often face challenges such as poor electrical conductivity,compromised chemical stability,and large volume changes during charge–discharge cycles.This review article comprehensively examines recent research eff orts aiming at improving the performance of IBS materials,focusing on three main approaches:nanostructure design(including 0D nanoparticles,1D nanowires,2D nanosheets,and 3D structures),composite development(including carbonaceous materials,metal compounds,and polymers),and material defect engineering(through doping and vacancy introduction).The article sheds light on novel concepts and methodologies designed to address the inherent limitations of IBS electrode materials in supercapacitors.These conceptual frameworks and strategic interventions are expected to be applied to other nanomaterials,driving advancements in electrochemical energy conversion.
文摘Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven water splitting is limited by inefficient connections between functional modules,lack of highly active and stable electrocatalysts,and intermittent and unpredictable renewable energy supply.Herein,we construct a dualmodulated three-dimensional(3D)NiCo_(2)O_(4)@NiCo_(2)S_(4)(denoted as NCONCS)heterostructure deposited on nickel foam as a multifunctional electrode for electrocatalytic water splitting driven by photovoltaic-powered supercapacitors.Due to a stable 3D architecture configuration,abundant active sites,efficient charge transfer,and tuned interface properties,the NCONCS delivers a high specific capacity and rate performance for supercapacitors.A twoelectrode electrolyzer assembled with the NCONCS as both the anode and the cathode only requires a low cell voltage of 1.47 V to achieve a current density of 10 mA cm^(−2) in alkaline electrolyte,which outperforms the state-of-the-art bifunctional electrocatalysts.Theoretical calculations suggest that the generated heterointerfaces in NCONCS improve the surface binding capability of reaction intermediates while regulating the local electronic structures,which thus accelerates the reaction kinetics of water electrolysis.As a proof of concept,an integrated configuration comprising a two-electrode electrolyzer driven by two series-connected supercapacitors charged by a solar cell delivers a high product yield with superior durability.
基金Supported by the Zhejiang Provincial Key Research and Development Program (No.2021C02047)。
文摘Accurate species identification is a key component of biodiversity research.DNA barcoding is an effective molecular method used for fish species identification.We aimed to study the DNA barcoding of fish in Zhoushan coastal waters,explore the differences and applicability of two gene fragments(12S rRNA and COI)of DNA barcoding in fish species identification,and established a comprehensive fish barcoding reference database.Two hundred and eighty-seven captured fish samples from Zhoushan coastal waters were identified using morphological characteristics and DNA barcoding.A total of 26412S rRNA sequences(belonging to eight orders,31 families,55 genera,and 66 species)and 188 COI sequences(belonging to seven orders,30 families,48 genera,and 58 species)were obtained.The lengths of the 12S rRNA sequences ranged from 165 to 178 bp,and the guanine-cytosine(GC)content was 45.37%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.10%and 26.66%,respectively.The length of the COI sequence ranged 574–655 bp,and the content of GC was 45.97%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.16%and 27.45%,respectively.The minimum interspecific genetic distances of 12S rRNA and COI(1.23%and 1.86%)were both greater than their maximum intraspecific genetic distances(2.42%and 8.66%).Three molecular analyses(NJ tree,ABGD,and GMYC)were performed to accurately identify and delineate species.Clustering errors occurred when the 12S rRNA sequences were delimited using the NJ tree method,and the delimitation results of ABGD and GMYC are consistent with the final species identification results.Our results demonstrate that DNA barcoding based on 12S rRNA and COI can be used as an effective tool for fish species identification,and 12S rRNA has good application prospects in the environmental DNA(eDNA)metabarcoding of marine fish.
基金Hebei Natural Science Fund for Distinguished Young Scholar,Grant/Award Number:E2019209433Natural Science Foundation of Hebei Province,Grant/Award Number:E2022209158+2 种基金National Natural Science Foundation of China,Grant/Award Number:52302223National Research Foundation of Korea,Grant/Award Number:NRF-2019R1A2C2090443Technology Innovation Program(Ministry of Trade,Industry&Energy,Korea),Grant/Award Number:20013621。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)offer high energy density,low cost,and are environmentally friendly,rendering them potential energy storage devices.However,dendrite growth on the zinc anode and numerous side reac-tions during operation challenge their commercialization.Recent advancements have introduced various materials for the functionalization of zinc anodes.These developments effectively mitigate the performance degradation of zinc anode,enhancing both its cycle stability and the overall performance of AZIBs.Herein,the construction of functionalized zinc anodes is discussed,current materials(including organic,inorganic and their composites)for modified zinc anodes are categorized,and the protective mechanism behind functionalized zinc anodes is analyzed.The study concludes by outlining the characteristics of materials suitable for dendritic-free zinc anode construction and the prospects for future development directions of functionalized zinc anodes in AZIBs.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972346,52172263)the Hunan Natural Science Fund for Distinguished Young Scholar(2021JJ10064)+1 种基金the Program of Youth Talent Support for Hunan Province(2020RC3011)the Innovation-Driven Project of Central South University(No.2020CX024).
文摘Designing a multifunctional separator with abundant ion migration paths is crucial for tuning the ion transport in rocking-chair-type batteries.Herein,a polydopamine-functionalized PVDF(PVDF@PDA)nanofibrous membrane is designed to serve as a separator for aqueous zinc-ion batteries(AZIBs).The functional groups(OH and NH)in PDA facilitate the formation of Zn O and Zn N coordination bonds with Zn ions,homogenizing the Zn-ion flux and thus enabling dendrite-free Zn deposition.Moreover,the PVDF@PDA separator effectively inhibits the shuttling of V-species through the formation of V-O coordination bonds.As a result,the Zn/NH_(4)V_(4)O_(10) battery with the PVDF@PDA separator exhibits enhanced cycling stability(92.3%after 1000 cycles at 5 A g^(-1))and rate capability compared to that using a glass fiber separator.This work provides a new avenue to design functionalized separators for high-performance AZIBs.
基金China Postdoctoral Science Foundation,Grant/Award Numbers:2021M690660,2021TQ0066Key Basic Research Program of Science and Technology Commission of Shanghai Municipality,Grant/Award Number:20JC1415300+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:21701153,21875044Program of Shanghai Academic Research Leader,Grant/Award Number:19XD1420300。
文摘Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.