Biomass usually is noticed a composition of various types of waste materials that can be utilized as useful form of energy alternative to the conventional fossil fuels. However, this new kind of energy has not met its...Biomass usually is noticed a composition of various types of waste materials that can be utilized as useful form of energy alternative to the conventional fossil fuels. However, this new kind of energy has not met its full potential in production of energy, especially electricity generation due to its lower performance in terms of thermal efficiency. Algae (included Microalgae & Macroalgae) are widely used for multi-application developments such as fishery aquaculture, food/nutrient supplement, cosmetics, and biomass energy. Microalgae have been treated as the source of bio-fuel. In this paper, we selected the two types of freshwater microalgae "Chlorella Vulgaris" & "Spirulina" and macro algae (Laminariaceae) as the main materials and we analyzed TGA (thermal gravity analysis) and calorific values (heat of combustion). We found the calorific values are 1,000-5,000 KC/KG and TGA results show that the microalgae decrease rapidly after reached 300 ℃. The results in this paper will be used as a reference material for microalgae multi-oriental energy application and biomass composition proximate and ultimate research development in the future.展开更多
This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxe...This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxes (10 - 30 W). Here, pure water (distilled water) and graphene oxide (GO)/water nanofluids are employed respectively as working fluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.10%, 0.15%, and 0.20% volume concentrations. Multi-heat pipe is fabricated from copper;the heating and cooling sections are the same size and both are connected by four circular parallel tubes. Temperature fields and thermal resistance are measured for different filling ratio, heat fluxes and volume concentrations. The results indicated that the thermal performance of heat pipe increased with increasing the concentration of GO nanoparticles in the base fluid, while the maximum heat transfer enhancement was observed at 0.20% volume concentration. GO/water nanofluids showed lower thermal resistance compared to pure water;the optimal thermal resistance was obtained at 100% filling charge ratio with 0.20% volume concentration. Studies were also demonstrated that heat transfer coefficient of the heat pipe significantly increases with increasing the input heat flux and GO nanoparticles concentration.展开更多
The flow visualization work with the aid of PIV and Piezometer deals with flip-flop flow around diamond-shaped cylinder bundle revised with concavities on both bundle walls. It is disclosed that 1) the concavity const...The flow visualization work with the aid of PIV and Piezometer deals with flip-flop flow around diamond-shaped cylinder bundle revised with concavities on both bundle walls. It is disclosed that 1) the concavity constructed on both side-walls of a diamond cylinder induces a substantial change in the flow patterns in the exit jet-stream field and jet- stream dispersion, 2) pressure characteristics are quantitatively measured in a diverging-flow region in diamond cylinder bundles with concavityand in its downstream region, and 3) flip-flop flow occurs in the flow passages and its occurrence condition is obtained.展开更多
The objective of the present study is to examine and compare the performance and emission characteristic of two biodiesel fuels produced from rapeseed oil via transesterification method.Tested biodiesel fuels(ROME(Rap...The objective of the present study is to examine and compare the performance and emission characteristic of two biodiesel fuels produced from rapeseed oil via transesterification method.Tested biodiesel fuels(ROME(Rapeseed Oil Methyl Ester)and ROEE(Rapeseed Oil Ethyl Ester))were selected based on their properties obtained from an optimization of transesterification conditions.A Yanmar diesel engine has led to evaluating their performance parameters such as fuel consumption rate,exhaust gas temperature and emission characteristic corresponding to nitrogen oxides(NOx),carbone monoxide(CO)and carbon dioxide(CO2).A comparative analysis was carried out using normal diesel fuel tested in same experimental conditions.Fuel consumption rate was measured by observing the volumetric rate from the fuel tank of the engine supported by stopwatch.The exhaust gas temperature and emission characteristic were measured simultaneously by using a testo 350 flue gas analyzer.According to the results,biodiesel fuels showed a higher fuel consumption rate and exhaust gas temperature under an increase of engine speed.They also exhibited lower NOx emission with a slight rise in CO and CO2 emission compared to mineral diesel fuel.ROME exhibited low emission gas compared to ROEE and mineral diesel.It can be evaluated as a promising alternative fuel for diesel engine.展开更多
In this study,biodiesel fuel was produced from rapeseed oil via transesterification method.The optimum reaction conditions were determined by varying alcohol type and its concentration considering their influence on t...In this study,biodiesel fuel was produced from rapeseed oil via transesterification method.The optimum reaction conditions were determined by varying alcohol type and its concentration considering their influence on the yield and properties of produced biodiesel.Methanol and ethanol were alcohol used in the transesterification process.The density of biodiesel was measured at 15℃according to EN ISO 12185 test method and its viscosity was determined at 40℃by using a Brookfield digital viscometer(DV-II+Pro).Shimadzu Auto-Calculating Bomb calorimeter CA-4AJ was used to measure the high heating value.The optimum transesterification conditions found were alcohol:oil ratio of 18:1,1%of potassium hydroxide as catalyst,60 min of reaction time,60℃of reaction temperature and stirring speed of 650 rpm.Biodiesel properties under these conditions satisfied the regulatory standards and are slightly similar to those of mineral diesel tested in same conditions.Using methanol gives better results compared to ethanol.展开更多
The aim of the present study is to develop the biomass furnace combustor which can effectively employ four unused biomasses, i.e., wood bark, wood branch, bamboo, and grass as a fuel. Emphasis is placed on the combust...The aim of the present study is to develop the biomass furnace combustor which can effectively employ four unused biomasses, i.e., wood bark, wood branch, bamboo, and grass as a fuel. Emphasis is placed on the combustion gas components and combustion gas temperature in the combustor. It is found from the study that: (1) Four unused biomasses can take plate self combustion and the stable combustion yield; (2) Different combustion temperature distribution appears in combustor and is affected by each biomass; (3) The concentrations of nitrogen oxide and sulfur oxides are lower than the discharge standard value; (4) Higher thermal efficiency yields for bark, bamboo and grass.展开更多
A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circul...A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.展开更多
Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling proper...Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.展开更多
文摘Biomass usually is noticed a composition of various types of waste materials that can be utilized as useful form of energy alternative to the conventional fossil fuels. However, this new kind of energy has not met its full potential in production of energy, especially electricity generation due to its lower performance in terms of thermal efficiency. Algae (included Microalgae & Macroalgae) are widely used for multi-application developments such as fishery aquaculture, food/nutrient supplement, cosmetics, and biomass energy. Microalgae have been treated as the source of bio-fuel. In this paper, we selected the two types of freshwater microalgae "Chlorella Vulgaris" & "Spirulina" and macro algae (Laminariaceae) as the main materials and we analyzed TGA (thermal gravity analysis) and calorific values (heat of combustion). We found the calorific values are 1,000-5,000 KC/KG and TGA results show that the microalgae decrease rapidly after reached 300 ℃. The results in this paper will be used as a reference material for microalgae multi-oriental energy application and biomass composition proximate and ultimate research development in the future.
文摘This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxes (10 - 30 W). Here, pure water (distilled water) and graphene oxide (GO)/water nanofluids are employed respectively as working fluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.10%, 0.15%, and 0.20% volume concentrations. Multi-heat pipe is fabricated from copper;the heating and cooling sections are the same size and both are connected by four circular parallel tubes. Temperature fields and thermal resistance are measured for different filling ratio, heat fluxes and volume concentrations. The results indicated that the thermal performance of heat pipe increased with increasing the concentration of GO nanoparticles in the base fluid, while the maximum heat transfer enhancement was observed at 0.20% volume concentration. GO/water nanofluids showed lower thermal resistance compared to pure water;the optimal thermal resistance was obtained at 100% filling charge ratio with 0.20% volume concentration. Studies were also demonstrated that heat transfer coefficient of the heat pipe significantly increases with increasing the input heat flux and GO nanoparticles concentration.
文摘The flow visualization work with the aid of PIV and Piezometer deals with flip-flop flow around diamond-shaped cylinder bundle revised with concavities on both bundle walls. It is disclosed that 1) the concavity constructed on both side-walls of a diamond cylinder induces a substantial change in the flow patterns in the exit jet-stream field and jet- stream dispersion, 2) pressure characteristics are quantitatively measured in a diverging-flow region in diamond cylinder bundles with concavityand in its downstream region, and 3) flip-flop flow occurs in the flow passages and its occurrence condition is obtained.
基金This work was supported by the JICA(Japan International Cooperation Agency)through the program of ABE Initiative(African Business Education Initiative for Youth)and the collaboration with Kumamoto University.
文摘The objective of the present study is to examine and compare the performance and emission characteristic of two biodiesel fuels produced from rapeseed oil via transesterification method.Tested biodiesel fuels(ROME(Rapeseed Oil Methyl Ester)and ROEE(Rapeseed Oil Ethyl Ester))were selected based on their properties obtained from an optimization of transesterification conditions.A Yanmar diesel engine has led to evaluating their performance parameters such as fuel consumption rate,exhaust gas temperature and emission characteristic corresponding to nitrogen oxides(NOx),carbone monoxide(CO)and carbon dioxide(CO2).A comparative analysis was carried out using normal diesel fuel tested in same experimental conditions.Fuel consumption rate was measured by observing the volumetric rate from the fuel tank of the engine supported by stopwatch.The exhaust gas temperature and emission characteristic were measured simultaneously by using a testo 350 flue gas analyzer.According to the results,biodiesel fuels showed a higher fuel consumption rate and exhaust gas temperature under an increase of engine speed.They also exhibited lower NOx emission with a slight rise in CO and CO2 emission compared to mineral diesel fuel.ROME exhibited low emission gas compared to ROEE and mineral diesel.It can be evaluated as a promising alternative fuel for diesel engine.
文摘In this study,biodiesel fuel was produced from rapeseed oil via transesterification method.The optimum reaction conditions were determined by varying alcohol type and its concentration considering their influence on the yield and properties of produced biodiesel.Methanol and ethanol were alcohol used in the transesterification process.The density of biodiesel was measured at 15℃according to EN ISO 12185 test method and its viscosity was determined at 40℃by using a Brookfield digital viscometer(DV-II+Pro).Shimadzu Auto-Calculating Bomb calorimeter CA-4AJ was used to measure the high heating value.The optimum transesterification conditions found were alcohol:oil ratio of 18:1,1%of potassium hydroxide as catalyst,60 min of reaction time,60℃of reaction temperature and stirring speed of 650 rpm.Biodiesel properties under these conditions satisfied the regulatory standards and are slightly similar to those of mineral diesel tested in same conditions.Using methanol gives better results compared to ethanol.
文摘The aim of the present study is to develop the biomass furnace combustor which can effectively employ four unused biomasses, i.e., wood bark, wood branch, bamboo, and grass as a fuel. Emphasis is placed on the combustion gas components and combustion gas temperature in the combustor. It is found from the study that: (1) Four unused biomasses can take plate self combustion and the stable combustion yield; (2) Different combustion temperature distribution appears in combustor and is affected by each biomass; (3) The concentrations of nitrogen oxide and sulfur oxides are lower than the discharge standard value; (4) Higher thermal efficiency yields for bark, bamboo and grass.
文摘A multi-heat pipe is a device for heat transmission. It is composed of a heating section, a cooling section and an adiabatic section. The heating and cooling sections are the same and both are connected by four circular parallel tubes. This experimental study is performed to investigate heat transfer performance of a multi-heat pipe in the vertical orientation using pure water and GO (graphene oxide)/water nanofluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.1%, 0.15%, and 0.2% volume concentrations. The thermal performance has been investigated with varying heat flux in the range of 10-30 W and 100% fill charge ratio. Wall temperature, thermal resistance, and heat transfer coefficient of the heat pipe are measured and compared with those for the heat pipe using pure water. The experimental results show that the evaporator wall temperature with GO nanofluid is lower than that of the base fluid. Also, the heat pipe that charged with nanofluids showed lower thermal resistance compared with pure water. Heat transfer enhancement is caused by suspended nanoparticles and is pronounced with the increase in particle volume fraction.
文摘Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.