Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier trans...Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier transform infrared(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate(APP),and MAPP has higher residual rate than that of APP after combustion.The flame retardant action of MAPP and APP in polypropylene(PP)is investigated by the limited oxygen index(LOI),vertical burning test(UL-94),TGA,SEM,and cone calorimeter test(CCT).The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite.UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt%loading.The results of CCT also show that MAPP is more efficient than APP.The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer.The flame retardant mechanism of PP/MAPP is also discussed.展开更多
To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyr...To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved.展开更多
Polyphenylene sulfone/graphene oxide(PPSU/GO) mixed matrix membranes with different GO contents are prepared by phase inversion technique using, PEG-1000 as porogen, and N,N-dimethylacetamide(DMAC) as solvent.The hydr...Polyphenylene sulfone/graphene oxide(PPSU/GO) mixed matrix membranes with different GO contents are prepared by phase inversion technique using, PEG-1000 as porogen, and N,N-dimethylacetamide(DMAC) as solvent.The hydrophilicity and pure water flux of the membrane are investigated. The morphology, hydrophilicity, thermodynamic stability and compatibility of the membranes are characterized by various techniques such as SEM,TGA, FTIR and so on. The permeation properties of the membrane are measured in terms of pure water flux and bovine serum albumin(BSA) retention. The results indicate that when the GO content is 1.5 wt%, an evenly distributed finger structure has been formed in the mixed matrix membranes. Owing to the presence of GO,the hydrophilicity and the thermal stability of the membranes are improved, and the fouling resistance is also enhanced.展开更多
基金Supported by the Natural Science Foundation of Hebei Province(B2016209059)
文摘Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier transform infrared(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate(APP),and MAPP has higher residual rate than that of APP after combustion.The flame retardant action of MAPP and APP in polypropylene(PP)is investigated by the limited oxygen index(LOI),vertical burning test(UL-94),TGA,SEM,and cone calorimeter test(CCT).The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite.UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt%loading.The results of CCT also show that MAPP is more efficient than APP.The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer.The flame retardant mechanism of PP/MAPP is also discussed.
基金supported by Key Research and Development of Tangshan (19140204F)。
文摘To enhance the performance of the polyphenylene sulfone(PPSU) membrane,a novel mixed matrix membrane with hydrophilicity and antifouling properties was prepared.Using PPSU as the ba sic membrane material,polyvinyl pyrrolidone(PVP) as the porogen,N-Methyl pyrrolidone(NMP) as the solvent,and MOF-CAU-1(Al_(4)(OH)_(2)(OCH_(3))_4(H_2 N-BDC)_(3)·xH_(2) O) as the filler,PPSU/CAU-1 mixed matrix membrane(MMM) was prepared by an immersion precipitation and phase transformation technique.By changing the amount of MOF-CAU-1,the properties and performance of the MMM membrane were investigated in terms of hydrophilicity,pore morphology,surface roughness,and dye removal.The results show that the highest pure water flux of the mixed reached 47.9 L·m^(-2)·h^(-1), when the CAU-1 addition amount was 1.0 wt%, which was 23% higher than that of the pure PPSU membrane.Both the rejection rate and the antifouling performance of the MMM membrane also noticeably improved.
基金Supported by the Natural Science Foundation of Hebei Province(B2016209059)the Training Fund Project of North China University of Science and Technology(sp201520)
文摘Polyphenylene sulfone/graphene oxide(PPSU/GO) mixed matrix membranes with different GO contents are prepared by phase inversion technique using, PEG-1000 as porogen, and N,N-dimethylacetamide(DMAC) as solvent.The hydrophilicity and pure water flux of the membrane are investigated. The morphology, hydrophilicity, thermodynamic stability and compatibility of the membranes are characterized by various techniques such as SEM,TGA, FTIR and so on. The permeation properties of the membrane are measured in terms of pure water flux and bovine serum albumin(BSA) retention. The results indicate that when the GO content is 1.5 wt%, an evenly distributed finger structure has been formed in the mixed matrix membranes. Owing to the presence of GO,the hydrophilicity and the thermal stability of the membranes are improved, and the fouling resistance is also enhanced.