期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities
1
作者 Lei Ding Kui Li +10 位作者 Weitian Wang Zhiqiang Xie shule yu Haoran yu David ACullen Alex Keane Kathy Ayers Christopher BCapuano Fangyuan Liu Pu-Xian Gao Feng-yuan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期225-239,共15页
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s... Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution. 展开更多
关键词 Ionomer-free Amorphous IrOx electrodes Ultrahigh material utilization Scalable electrodeposition Hydrogen production
下载PDF
Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution 被引量:4
2
作者 Lei Ding Zhiqiang Xie +8 位作者 shule yu Weitian Wang Alexander Y.Terekhov Brian K.Canfield Christopher B.Capuano Alex Keane Kathy Ayers David A.Cullen Feng-yuan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期257-274,共18页
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proto... Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices. 展开更多
关键词 Seeding layer Electrochemically grown Pt nanosheet Ultralow loadings High catalyst utilization Hydrogen evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部