Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Two novel boron(B),sulfur(S),nitrogen(N)-doped polycyclic aromatic hydrocarbon multiple resonance emitters(DBNS and DBNS-tBu)are designed and synthesized for narrowband red emission by embedding two pairs of S and N a...Two novel boron(B),sulfur(S),nitrogen(N)-doped polycyclic aromatic hydrocarbon multiple resonance emitters(DBNS and DBNS-tBu)are designed and synthesized for narrowband red emission by embedding two pairs of S and N atoms and two B atoms in para-positions of central benzene rings within a tridecacyclic aromatic skeleton to form donor-π-donor(D-π-D)and acceptor-π-acceptor(A-π-A)structures,which not only exhibit emission maximum at 641 nm with small full width at half maximum of 39 nm,but also combine high photoluminescent quantum efficiency(85%)and rapid reverse intersystem crossing(kRISC=2.2×10^(5) s^(−1)).展开更多
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金support from the National Natural Science Foundation of China(Nos.52122309,52073282,21975247 and 51833009)the Open Project of State Key Laboratoryof SupramolecularStructureandMaterials(sklssm2022016)the Youth Innovation Promotion Association of Chinese Academyof Sciences(No.2015180).
文摘Two novel boron(B),sulfur(S),nitrogen(N)-doped polycyclic aromatic hydrocarbon multiple resonance emitters(DBNS and DBNS-tBu)are designed and synthesized for narrowband red emission by embedding two pairs of S and N atoms and two B atoms in para-positions of central benzene rings within a tridecacyclic aromatic skeleton to form donor-π-donor(D-π-D)and acceptor-π-acceptor(A-π-A)structures,which not only exhibit emission maximum at 641 nm with small full width at half maximum of 39 nm,but also combine high photoluminescent quantum efficiency(85%)and rapid reverse intersystem crossing(kRISC=2.2×10^(5) s^(−1)).