Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-me...Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.展开更多
Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common ...Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.展开更多
The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection ...The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays.展开更多
Ferroptosis is a pattern of iron-mediated regulatory cell death characterized by oxidative damage.The molecular regulatory mechanisms are related to iron metabolism,lipid peroxidation,and glutathione metabolism.Additi...Ferroptosis is a pattern of iron-mediated regulatory cell death characterized by oxidative damage.The molecular regulatory mechanisms are related to iron metabolism,lipid peroxidation,and glutathione metabolism.Additionally,some immunological signaling pathways,such as the cyclic GMP-AMP synthase-stimulator of the interferon gene axis,the Janus kinase-signal transducer and activator of transcription 1 axis,and the transforming growth factor beta 1-Smad3 axis,may also participate in the regulation of ferroptosis.Studies have shown that ferroptosis is significantly associated with many diseases such as cancer,neurodegenerative diseases,inflammatory diseases,and autoimmune diseases.Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases,the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of aforementioned conditions.展开更多
Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological en...Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.展开更多
Interleukin(IL)-18,a member of the IL-1 family,is commonly known as an interferon-γinducer and is expressed in both hematopoietic and non-hematopoietic cells,such as intestinal epithelial cells,keratinocytes,and endo...Interleukin(IL)-18,a member of the IL-1 family,is commonly known as an interferon-γinducer and is expressed in both hematopoietic and non-hematopoietic cells,such as intestinal epithelial cells,keratinocytes,and endothelial cells.In the immune system,the mature IL-18 plays a critical role in eliminating tumors and infectious agents by activating NK cells and T-lymphocytes,and by synergizing with other cytokines like IL-12 and IL-1βto induce inflammation[1-2].展开更多
Digital watermarking technology plays an essential role in the work of anti-counterfeiting and traceability.However,image watermarking algorithms are weak against hybrid attacks,especially geometric attacks,such as cr...Digital watermarking technology plays an essential role in the work of anti-counterfeiting and traceability.However,image watermarking algorithms are weak against hybrid attacks,especially geometric attacks,such as cropping attacks,rotation attacks,etc.We propose a robust blind image watermarking algorithm that combines stable interest points and deep learning networks to improve the robustness of the watermarking algorithm further.First,to extract more sparse and stable interest points,we use the Superpoint algorithm for generation and design two steps to perform the screening procedure.We first keep the points with the highest possibility in a given region to ensure the sparsity of the points and then filter the robust interest points by hybrid attacks to ensure high stability.The message is embedded in sub-blocks centered on stable interest points using a deep learning-based framework.Different kinds of attacks and simulated noise are added to the adversarial training to guarantee the robustness of embedded blocks.We use the ConvNext network for watermark extraction and determine the division threshold based on the decoded values of the unembedded sub-blocks.Through extensive experimental results,we demonstrate that our proposed algorithm can improve the accuracy of the network in extracting information while ensuring high invisibility between the embedded image and the original cover image.Comparison with previous SOTA work reveals that our algorithm can achieve better visual and numerical results on hybrid and geometric attacks.展开更多
The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theore...The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.展开更多
This study proposes a rational strategy for the design,fabrication and system integration of the humanoid intelligent display platform(HIDP)to meet the requirements of highly humanized mechanical properties and intell...This study proposes a rational strategy for the design,fabrication and system integration of the humanoid intelligent display platform(HIDP)to meet the requirements of highly humanized mechanical properties and intelligence for human-machine interfaces.The platform’s sandwich structure comprises a middle lightemitting layer and surface electrodes,which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer,respectively.Both materials are highly stretchable and resilient,endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations.Furthermore,by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation,the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things(IoT)and machine learning techniques.The accuracy of species identification reaches about 100%for 200 rounds of random testing.Additionally,the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics,displaying real-time results with an accuracy of approximately 99%and 93%,respectively.In sum,this study offers a rational route to designing intelligent display devices for audiovisual interaction,which can expedite the application of smart display devices in human-machine interaction,soft robotics,wearable sound-vision system and medical devices for hearing-impaired patients.展开更多
The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjac...The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjacent interfaces.However,the polycrystalline perovskite layers in most highly efficient PSCs still contain various defects that greatly limit photovoltaic performance and stability of the devices.Herein,we introduce a multifunctional additive ethylene diamine tetra methylene phosphonic sodium(EDTMPS) with multiple anchor points into the precursor of perovskite to improve the efficiency and stability of PSCs and provide in-situ protection of lead leakage.The addition of EDTMPS acts as a crystal growth controller and passivation agent for perovskite films,thereby slowing down the crystallization rate of the film and obtaining high-quality perovskite films.Our study also provides an insight into how the modifier modulate the interfacial energy level arrangement as well as affect transfer of charge carriers and their recombination under photoinduced excitation.As a result,the power conversion efficiency(PCE) of single subcell with a working area of 0.255 cm^(2) increases significantly from 20.03% to 23.37%.Moreover,we obtained a PCE of 19.16% for the 25 cm^(2) module.Importantly,the unencapsulated EDTMP-modified PSCs exhibit better operational and thermal stability,as well as in-situ absorption of leaked lead ions.展开更多
Model predictive control is widely used in the design of autonomous driving algorithms.However,its parameters are sensitive to dynamically varying driving conditions,making it difficult to be implemented into practice...Model predictive control is widely used in the design of autonomous driving algorithms.However,its parameters are sensitive to dynamically varying driving conditions,making it difficult to be implemented into practice.As a result,this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller.Specifically,the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coefficients of the model predictive controller.In this method,a risk threshold model is proposed to classify the risk level of the scenes based on the scene features,and aid in the design of the reinforcement learning reward function and ultimately improve the adaptability of the model predictive controller to real-world scenarios.The proposed algorithm is compared to a pure model predictive controller in car-following case.According to the results,the proposed method enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according to risk variations,showing a good scenario adaptability with safety guaranteed.展开更多
The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement...The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.展开更多
Objective Osteogenesis is vitally important for bone defect repair,and Zuo Gui Wan(ZGW)is a classic prescription in traditional Chinese medicine(TCM)for strengthening bones.However,the specific mechanism by which ZGW ...Objective Osteogenesis is vitally important for bone defect repair,and Zuo Gui Wan(ZGW)is a classic prescription in traditional Chinese medicine(TCM)for strengthening bones.However,the specific mechanism by which ZGW regulates osteogenesis is still unclear.The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis.Methods A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells(BMSCs).Results In total,487 no-repeat targets corresponding to the bioactive components of ZGW were screened,and 175 target genes in the intersection of ZGW and osteogenesis were obtained.And 28 core target genes were then obtained from a PPI network analysis.A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress,metal ions,and lipopolysaccharide.Additionally,KEGG pathway enrichment analysis revealed that multiple signaling pathways,including the phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)signaling pathway,were associated with ZGW-promoted osteogensis.Further experimental validation showed that ZGW could increase alkaline phosphatase(ALP)activity as well as the mRNA and protein levels of ALP,osteocalcin(OCN),and runt related transcription factor 2(Runx 2).What’s more,Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT,and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002.Finally,the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002.Conclusion ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.展开更多
Pesticide residue detection is an important work to ensure the quality safety of agricultural products.In the process of agricultural production,in order to prevent and control agricultural diseases and pests,a certai...Pesticide residue detection is an important work to ensure the quality safety of agricultural products.In the process of agricultural production,in order to prevent and control agricultural diseases and pests,a certain amount of pesticides need to be used.However,if pesticides are used excessively,there will be certain pesticide residues in crops and related products.Therefore,it is necessary to do a good job in pesticide residue detection.The gas chromatography-mass spectrometry(GC-MS)and liquid chromatography-mass spectrometry(LC-MS)detection methods have good results and can effectively detect pesticide residues in related products.This paper reviewed and analyzed the application of GC-MS and LC-MS in pesticide residue detection,and proposed optimization measures based on practical experience,hoping to provide reference for relevant scholars.展开更多
[Objectives]This study was conducted to understand the status of pesticide residues and dietary intake risk of Chinese chives in Tangshan area. [Methods] Sixty eight kinds of pesticide residues in 415 Chinese chive sa...[Objectives]This study was conducted to understand the status of pesticide residues and dietary intake risk of Chinese chives in Tangshan area. [Methods] Sixty eight kinds of pesticide residues in 415 Chinese chive samples collected from Tangshan area were qualitatively and quantitatively determined by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) and gas chromatography(GC) in 2020. [Results] The results showed that 41 kinds of pesticide residues were detected in the 415 Chinese chive samples, and the detection rate was 69.4%(288/415), and there was a combination of pesticides in many samples. According to the National Food Safety Standard―Maximum Residue Limits of Pesticides in Food(GB 2763-2019), the residues of 12 pesticides exceeded the maximum residue limits(MRLs), and the unqualified rate was 38.07%(158/415). The highest detection rate of clothianidin was 41.20%(171/415), but there was no MRL in GB 2763-2019. The next was procymidone, the detection rate of which was 35.42%(147/415), and the over-standard rate was 30.12%(125/415). Forbidden and restricted pesticides were detected in some samples. According to the dietary exposure risk assessment, the NEDI/ADI values were all less than 1 and the intake risk was within acceptable range. In Tangshan area, the types of pesticides used in Chinese chive production are complex, and there are risks of multi-residue pollution and use of banned and restricted pesticides and unregistered pesticides. It is suggested that routine monitoring of pesticide residues and management of pesticide use should be strengthened to ensure the quality and safety of agricultural products. [Conclusions] This study provides a theoretical basis for the safe production of Chinese chive and the standardized and rational use of pesticides.展开更多
Aqueous Zinc-based energy storage devices are considered as one of the potential candidates in future power technologies.Nevertheless,poor low temperature performance and uncontrollable Zn dendrite growth lead to the ...Aqueous Zinc-based energy storage devices are considered as one of the potential candidates in future power technologies.Nevertheless,poor low temperature performance and uncontrollable Zn dendrite growth lead to the limited energy storage capability.Herein,an anti-hydrolysis,cold-resistant,economical,safe,and environmentally friendly electrolyte is developed by utilizing water,ethylene glycol(EG),and ZnCl_(2)with high ionic conductivity(7.9 mS cm^(-1)in glass fiber membrane at-20℃).The spectra data and DFT calculations show the competitive coordination of EG and Cl-to induce a unique solvation configuration of Zn^(2+),conducive to effectively inhibiting the hydrolysis of Zn^(2+),suppressing the dendrite growth,and broadening the working voltage range and temperature range of ZnCl_(2)electrolyte.The isotope tracing data confirm that Cl^(-)could effectively destroy the ZnO passivation film,promoting the formation of Zn nuclei and improving its reaction activity.Compared to the corresponding ZnSO4electrolyte,the Cu/Zn half-cell with the ZnCl_(2)electrolyte exhibits a stable cycle life of more than 1600 h at-20℃,even at the current density of 5 mA cm^(-2).The assembled Zn-ion hybrid capacitor possesses an average capacity of 42.68 m A h g^(-1)under-20℃at a current density of 5 A g^(-1),3.5 times than that of the modified ZnSO4electrolyte.Our work proposes a new approach for optimizing aqueous electrolytes to meet low temperature energy storage applications.展开更多
BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces th...BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.展开更多
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金supported by the National Natural Science Foundation of China (No. 22005216 and 52172241)the General Research Fund of Hong Kong (No. CityU 11308321)Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY130)
文摘Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.
基金funded by the China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(CI2021A00601)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ16-YQ-037 and JJPY2022022)the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021B017-09).
文摘Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.
基金supported by the China National Natural Science Foundation(No.2212260192043301+1 种基金91843301)the Science and Technology Commission of Shanghai Municipality(20ZR1404300 and 212307128)
文摘The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1303900 to S.Y.)the National Natural Science Foundation of China(Grant Nos.32270921 and 82070567 to S.Y.,and 82204354 to Y.H.)+4 种基金the Open Project of State Key Laboratory of Reproductive Medicine of Nanjing Medical University(Grant No.SKLRM-2021B3 to S.Y.)'the Talent Cultivation Project of"Organized Scientific Research"of Nanjing Medical University(Grant No.NJMURC20220014 to S.Y.)the Natural Science Foundation of Jiangsu Province(Grant No.BK20221352 to B.W.)the Jiangsu Provincial Outstanding Postdoctoral Program(Grant No.2022ZB419 to Y.H.)the Postdoctoral Research Funding Project of Gusu School(Grant No.GSBSHKY202104 to Y.H.)the China Postdoctoral Science Foundation(Grant No.2023T160329 to Y.H.).
文摘Ferroptosis is a pattern of iron-mediated regulatory cell death characterized by oxidative damage.The molecular regulatory mechanisms are related to iron metabolism,lipid peroxidation,and glutathione metabolism.Additionally,some immunological signaling pathways,such as the cyclic GMP-AMP synthase-stimulator of the interferon gene axis,the Janus kinase-signal transducer and activator of transcription 1 axis,and the transforming growth factor beta 1-Smad3 axis,may also participate in the regulation of ferroptosis.Studies have shown that ferroptosis is significantly associated with many diseases such as cancer,neurodegenerative diseases,inflammatory diseases,and autoimmune diseases.Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases,the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of aforementioned conditions.
基金supported by the Hebei Province Cultural and Artistic Science Planning and Tourism Research Project[Grant No.HB22-ZD002].
文摘Carbon peak and carbon neutrality(dual-carbon)are important targets for the international response to climate change.The Silk Road Economic Belt is a strategic resource region and is important for future ecological environment and tourism development.Based on the“dual-carbon”targets,the Single index quantification,Multiple index synthesis,and Poly-criteria integration evaluation model were used in this study to measure the coordinated development index of the ecological environment,public service,and tourism economy along the Silk Road Economic Belt and to analyze its spatial and temporal evolution.Further,it explores the dynamic evolution and development trend of the three systems using the Kernel Density and Grey Markov Prediction Model.The results show that the coordinated development index along this region needs to be improved during the study period.Furthermore,the coordinated development index of the Southwest region is relatively higher than that of the Northwest region.From the development trend of the three systems,all of them develop in a stable manner;however,the tourism economy system is easily affected by external disturbances.The coordinated development index of the three systems changes dynamically and tends to be in a good state of coordination.There is a certain spatial and temporal heterogeneity.The gravity center of the coordinated development index has been in the Southwest region.During the forecast period,the coordinated development index along this region will improve significantly,while insufficient and unbalanced development will continue.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1303900 to S.Y.)the National Natural Science Foundation of China(Grant Nos.32270921 and 82070567 to S.Y.,and 82204354 to Y.H.)+3 种基金the Open Project of State Key Laboratory of Reproductive Medicine of Nanjing Medical University(Grant No.SKLRM-2023A2 to S.Y.)the Talent Cultivation Project of"Organized Scientific Research"of Nanjing Medical University(Grant No.NJMURC20220014 to S.Y.)the Jiangsu Provincial Outstanding Postdoctoral Program(Grant No.2022ZB419 to Y.H.)the China Postdoctoral Science Foundation(Grant No.2023T160329 to Y.H.).
文摘Interleukin(IL)-18,a member of the IL-1 family,is commonly known as an interferon-γinducer and is expressed in both hematopoietic and non-hematopoietic cells,such as intestinal epithelial cells,keratinocytes,and endothelial cells.In the immune system,the mature IL-18 plays a critical role in eliminating tumors and infectious agents by activating NK cells and T-lymphocytes,and by synergizing with other cytokines like IL-12 and IL-1βto induce inflammation[1-2].
文摘Digital watermarking technology plays an essential role in the work of anti-counterfeiting and traceability.However,image watermarking algorithms are weak against hybrid attacks,especially geometric attacks,such as cropping attacks,rotation attacks,etc.We propose a robust blind image watermarking algorithm that combines stable interest points and deep learning networks to improve the robustness of the watermarking algorithm further.First,to extract more sparse and stable interest points,we use the Superpoint algorithm for generation and design two steps to perform the screening procedure.We first keep the points with the highest possibility in a given region to ensure the sparsity of the points and then filter the robust interest points by hybrid attacks to ensure high stability.The message is embedded in sub-blocks centered on stable interest points using a deep learning-based framework.Different kinds of attacks and simulated noise are added to the adversarial training to guarantee the robustness of embedded blocks.We use the ConvNext network for watermark extraction and determine the division threshold based on the decoded values of the unembedded sub-blocks.Through extensive experimental results,we demonstrate that our proposed algorithm can improve the accuracy of the network in extracting information while ensuring high invisibility between the embedded image and the original cover image.Comparison with previous SOTA work reveals that our algorithm can achieve better visual and numerical results on hybrid and geometric attacks.
基金supported by the BJAST High-level Innovation Team Program (No.BGS202001)the Beijing Postdoctoral Research Foundation (No.2022-ZZ-046)+3 种基金the National Natural and Science Foundation of China (No.51972026)the Japan Society for the Promotion of Science (JSPS)Grant-in-Aid for the Scientific Research (KAKENHI,Nos.16H06439 and 20H00297)the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices.”the scholarship granted to a visiting Ph.D.student of the Inter-University Exchange Project by the China Scholarship Council (CSC,No.201906460113)。
文摘The synthesis of oxygen vacancies(OVs)-modified TiO_(2)under mild conditions is attractive.In this work,OVs were easily introduced in TiO_(2)lattice during the hydrothermal doping process of trivalent iron ions.Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO_(2)(Fe-TiO_(2)).The OVs formation energy in Fe-TiO_(2)(1.12 eV)was only 23.6%of that in TiO_(2)(4.74 eV),explaining why Fe^(3+)doping could introduce OVs in the TiO_(2)lattice.The calculation results also indicated that impurity states introduced by Fe^(3+)and OVs enhanced the light absorption activity of TiO_(2).Additionally,charge carrier transport was investigated through the carrier lifetime and relative mass.The carrier lifetime of Fe-TiO_(2)(4.00,4.10,and 3.34 ns for 1at%,2at%,and 3at%doping contents,respectively)was longer than that of undoped TiO_(2)(3.22 ns),indicating that Fe^(3+) and OVs could promote charge carrier separation,which can be attributed to the larger relative effective mass of electrons and holes.Herein,Fe-TiO_(2)has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.
基金supported by the National Natural Science Foundation of China (Nos. 21935002, 51973116, 52003156)the starting grant of ShanghaiTech Universitythe Double First-Class Initiative Fund of ShanghaiTech University
文摘This study proposes a rational strategy for the design,fabrication and system integration of the humanoid intelligent display platform(HIDP)to meet the requirements of highly humanized mechanical properties and intelligence for human-machine interfaces.The platform’s sandwich structure comprises a middle lightemitting layer and surface electrodes,which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer,respectively.Both materials are highly stretchable and resilient,endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations.Furthermore,by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation,the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things(IoT)and machine learning techniques.The accuracy of species identification reaches about 100%for 200 rounds of random testing.Additionally,the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics,displaying real-time results with an accuracy of approximately 99%and 93%,respectively.In sum,this study offers a rational route to designing intelligent display devices for audiovisual interaction,which can expedite the application of smart display devices in human-machine interaction,soft robotics,wearable sound-vision system and medical devices for hearing-impaired patients.
基金the financial support from the Taishan Scholar Project of Shandong Province (tsqn201812098)the National Natural Science Foundation of China (62275115)+5 种基金the Shandong Provincial Natural Science Foundation (ZR2020MF103)the Yantai City University Integration Development Project (2021XDRHXMXK26)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciencesthe Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB510038)the Carbon Neutrality Innovation Research Center in Ludong UniversityLarge Instruments Open Foundation of Nantong University。
文摘The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjacent interfaces.However,the polycrystalline perovskite layers in most highly efficient PSCs still contain various defects that greatly limit photovoltaic performance and stability of the devices.Herein,we introduce a multifunctional additive ethylene diamine tetra methylene phosphonic sodium(EDTMPS) with multiple anchor points into the precursor of perovskite to improve the efficiency and stability of PSCs and provide in-situ protection of lead leakage.The addition of EDTMPS acts as a crystal growth controller and passivation agent for perovskite films,thereby slowing down the crystallization rate of the film and obtaining high-quality perovskite films.Our study also provides an insight into how the modifier modulate the interfacial energy level arrangement as well as affect transfer of charge carriers and their recombination under photoinduced excitation.As a result,the power conversion efficiency(PCE) of single subcell with a working area of 0.255 cm^(2) increases significantly from 20.03% to 23.37%.Moreover,we obtained a PCE of 19.16% for the 25 cm^(2) module.Importantly,the unencapsulated EDTMP-modified PSCs exhibit better operational and thermal stability,as well as in-situ absorption of leaked lead ions.
基金Supported by National Key R&D Program of China(Grant No.2022YFB2502900)Fundamental Research Funds for the Central Universities of China,Science and Technology Commission of Shanghai Municipality of China(Grant No.21ZR1465900)Shanghai Gaofeng&Gaoyuan Project for University Academic Program Development of China.
文摘Model predictive control is widely used in the design of autonomous driving algorithms.However,its parameters are sensitive to dynamically varying driving conditions,making it difficult to be implemented into practice.As a result,this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller.Specifically,the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coefficients of the model predictive controller.In this method,a risk threshold model is proposed to classify the risk level of the scenes based on the scene features,and aid in the design of the reinforcement learning reward function and ultimately improve the adaptability of the model predictive controller to real-world scenarios.The proposed algorithm is compared to a pure model predictive controller in car-following case.According to the results,the proposed method enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according to risk variations,showing a good scenario adaptability with safety guaranteed.
基金financially supported by the National Natural Science Foundation of China (Nos.52004272,52122404,52061135111,52174092,and 52074259)the Natural Science Foundation of Jiangsu Province,China (Nos.BK20200660 and BK20220157)+1 种基金the Xuzhou Science and Technology Project,China (Nos.KC22005 and KC21033)the Open Foundation of Shandong Key Laboratory of Mining Disaster Prevention and Control,China (No.SMDPC 202104)。
文摘The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.
文摘Objective Osteogenesis is vitally important for bone defect repair,and Zuo Gui Wan(ZGW)is a classic prescription in traditional Chinese medicine(TCM)for strengthening bones.However,the specific mechanism by which ZGW regulates osteogenesis is still unclear.The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis.Methods A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells(BMSCs).Results In total,487 no-repeat targets corresponding to the bioactive components of ZGW were screened,and 175 target genes in the intersection of ZGW and osteogenesis were obtained.And 28 core target genes were then obtained from a PPI network analysis.A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress,metal ions,and lipopolysaccharide.Additionally,KEGG pathway enrichment analysis revealed that multiple signaling pathways,including the phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)signaling pathway,were associated with ZGW-promoted osteogensis.Further experimental validation showed that ZGW could increase alkaline phosphatase(ALP)activity as well as the mRNA and protein levels of ALP,osteocalcin(OCN),and runt related transcription factor 2(Runx 2).What’s more,Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT,and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002.Finally,the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002.Conclusion ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceTangshan Science and Technology Entrepreneurship and Innovation Leading Talent Project(21130243A)+1 种基金Special Project of the Central Government in Guidance of Local Science and Technology Development(226Z5504G)Tangshan Talent Project(A202202005).
文摘Pesticide residue detection is an important work to ensure the quality safety of agricultural products.In the process of agricultural production,in order to prevent and control agricultural diseases and pests,a certain amount of pesticides need to be used.However,if pesticides are used excessively,there will be certain pesticide residues in crops and related products.Therefore,it is necessary to do a good job in pesticide residue detection.The gas chromatography-mass spectrometry(GC-MS)and liquid chromatography-mass spectrometry(LC-MS)detection methods have good results and can effectively detect pesticide residues in related products.This paper reviewed and analyzed the application of GC-MS and LC-MS in pesticide residue detection,and proposed optimization measures based on practical experience,hoping to provide reference for relevant scholars.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceTangshan Science and Technology Entrepreneurship and Innovation Leading Talent ProjectFund for the Central Government to Guide Local Scientific and Technological Development (226Z5504G)。
文摘[Objectives]This study was conducted to understand the status of pesticide residues and dietary intake risk of Chinese chives in Tangshan area. [Methods] Sixty eight kinds of pesticide residues in 415 Chinese chive samples collected from Tangshan area were qualitatively and quantitatively determined by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) and gas chromatography(GC) in 2020. [Results] The results showed that 41 kinds of pesticide residues were detected in the 415 Chinese chive samples, and the detection rate was 69.4%(288/415), and there was a combination of pesticides in many samples. According to the National Food Safety Standard―Maximum Residue Limits of Pesticides in Food(GB 2763-2019), the residues of 12 pesticides exceeded the maximum residue limits(MRLs), and the unqualified rate was 38.07%(158/415). The highest detection rate of clothianidin was 41.20%(171/415), but there was no MRL in GB 2763-2019. The next was procymidone, the detection rate of which was 35.42%(147/415), and the over-standard rate was 30.12%(125/415). Forbidden and restricted pesticides were detected in some samples. According to the dietary exposure risk assessment, the NEDI/ADI values were all less than 1 and the intake risk was within acceptable range. In Tangshan area, the types of pesticides used in Chinese chive production are complex, and there are risks of multi-residue pollution and use of banned and restricted pesticides and unregistered pesticides. It is suggested that routine monitoring of pesticide residues and management of pesticide use should be strengthened to ensure the quality and safety of agricultural products. [Conclusions] This study provides a theoretical basis for the safe production of Chinese chive and the standardized and rational use of pesticides.
基金supported by the National Natural Science Foundation of China(52002052)the Startup funds of Outstanding Talents of UESTC(A1098531023601205)+1 种基金the National Youth Talents Plan of China(G05QNQR049)the Foundation of State Key Laboratory of Silicon Materials(SKL2021-12)。
文摘Aqueous Zinc-based energy storage devices are considered as one of the potential candidates in future power technologies.Nevertheless,poor low temperature performance and uncontrollable Zn dendrite growth lead to the limited energy storage capability.Herein,an anti-hydrolysis,cold-resistant,economical,safe,and environmentally friendly electrolyte is developed by utilizing water,ethylene glycol(EG),and ZnCl_(2)with high ionic conductivity(7.9 mS cm^(-1)in glass fiber membrane at-20℃).The spectra data and DFT calculations show the competitive coordination of EG and Cl-to induce a unique solvation configuration of Zn^(2+),conducive to effectively inhibiting the hydrolysis of Zn^(2+),suppressing the dendrite growth,and broadening the working voltage range and temperature range of ZnCl_(2)electrolyte.The isotope tracing data confirm that Cl^(-)could effectively destroy the ZnO passivation film,promoting the formation of Zn nuclei and improving its reaction activity.Compared to the corresponding ZnSO4electrolyte,the Cu/Zn half-cell with the ZnCl_(2)electrolyte exhibits a stable cycle life of more than 1600 h at-20℃,even at the current density of 5 mA cm^(-2).The assembled Zn-ion hybrid capacitor possesses an average capacity of 42.68 m A h g^(-1)under-20℃at a current density of 5 A g^(-1),3.5 times than that of the modified ZnSO4electrolyte.Our work proposes a new approach for optimizing aqueous electrolytes to meet low temperature energy storage applications.
文摘BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.