Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb...Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.展开更多
We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to...We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to 0.8µm through process improvement.In order to suppress the influence of the kink effect,we have done SiN_(X) passivation treatment.The maximum saturation current density(ID_(max))and maximum transconductance(g_(m,max))increase as L_(recess) decreases to 0.4µm.At this time,the device shows ID_(max)=749.6 mA/mm at V_(GS)=0.2 V,V_(DS)=1.5 V,and g_(m,max)=1111 mS/mm at V_(GS)=−0.35 V,V_(DS)=1.5 V.Meanwhile,as L_(recess) increases,it causes parasitic capacitance C_(gd) and g_(d) to decrease,making f_(max) drastically increases.When L_(recess)=0.8µm,the device shows f_(T)=188 GHz and f_(max)=1112 GHz.展开更多
A set of 100-nm gate-length In P-based high electron mobility transistors(HEMTs)were designed and fabricated with different gate offsets in gate recess.A novel technology was proposed for independent definition of gat...A set of 100-nm gate-length In P-based high electron mobility transistors(HEMTs)were designed and fabricated with different gate offsets in gate recess.A novel technology was proposed for independent definition of gate recess and T-shaped gate by electron beam lithography.DC and RF measurement was conducted.With the gate offset varying from drain side to source side,the maximum drain current(I_(ds,max))and transconductance(g_(m,max))increased.In the meantime,fTdecreased while f;increased,and the highest fmax of 1096 GHz was obtained.It can be explained by the increase of gate-source capacitance and the decrease of gate-drain capacitance and source resistance.Output conductance was also suppressed by gate offset toward source side.This provides simple and flexible device parameter selection for HEMTs of different usages.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.61704189)the Common Information System Equipment Pre-Research Special Technology Project(31513020404-2)Youth Innovation Promotion Association of Chinese Academy of Sciences and the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,and the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)。
文摘Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.
基金the National Natural Science Foundation of China(Grant No.61434006).
文摘We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to 0.8µm through process improvement.In order to suppress the influence of the kink effect,we have done SiN_(X) passivation treatment.The maximum saturation current density(ID_(max))and maximum transconductance(g_(m,max))increase as L_(recess) decreases to 0.4µm.At this time,the device shows ID_(max)=749.6 mA/mm at V_(GS)=0.2 V,V_(DS)=1.5 V,and g_(m,max)=1111 mS/mm at V_(GS)=−0.35 V,V_(DS)=1.5 V.Meanwhile,as L_(recess) increases,it causes parasitic capacitance C_(gd) and g_(d) to decrease,making f_(max) drastically increases.When L_(recess)=0.8µm,the device shows f_(T)=188 GHz and f_(max)=1112 GHz.
基金Project supported by the National Nature Science Foundation of China(Grant No.61434006)。
文摘A set of 100-nm gate-length In P-based high electron mobility transistors(HEMTs)were designed and fabricated with different gate offsets in gate recess.A novel technology was proposed for independent definition of gate recess and T-shaped gate by electron beam lithography.DC and RF measurement was conducted.With the gate offset varying from drain side to source side,the maximum drain current(I_(ds,max))and transconductance(g_(m,max))increased.In the meantime,fTdecreased while f;increased,and the highest fmax of 1096 GHz was obtained.It can be explained by the increase of gate-source capacitance and the decrease of gate-drain capacitance and source resistance.Output conductance was also suppressed by gate offset toward source side.This provides simple and flexible device parameter selection for HEMTs of different usages.