Radiotherapy(RT)mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death(ICD),which releases damaged-associated molecular patterns and generates“eat me”sig...Radiotherapy(RT)mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death(ICD),which releases damaged-associated molecular patterns and generates“eat me”signals for the innate immune system to modulate the immunogenicity.However,tumor hypoxia significantly reduces the therapeutic efficacy of RT and hampers its mediation of ICD induction.Herein,Au@Bi_(2)Te_(3)-polyethylene glycol(PEG)was rationally constructed as theranostic nanozymes for mild photothermal therapy,tumor hypoxia modulation,and RT adjuvant cancer immunotherapy.The tumor-specific production of oxygen could not only augment the effects of RT by enhanced reactive oxygen species(ROS)generation,but also reduce hypoxia-related cytokines and downregulate programmed cell death-ligand 1(PD-L1)to unleash immune-enhancing T cells.Moreover,Au@Bi_(2)Te_(3)-PEG could act as an immune-blocking inhibitor by efficient ICD induction with the combination of mild-photothermal therapy+RT to inhibit the tumor immune escape and improve antitumor immune response.Increased amounts of CD^(4+) and CD^(8+) Tcells and elevated levels of cytokines could be observed that eventually led to effective post-medication inhibition of primary and abscopal tumors.Spectral computed tomography/photoacoustic imaging allowed noninvasive and real-time tracking of nanoparticle(NP)accumulation and oxygenation status at tumor sites.Collectively,Au@Bi_(2)Te_(3)-PEG NPs could serve as effective theranostic nanoregulators with remarkable synergistic mildphotothermal/RT/immunotherapy effects that helped reshape the immune microenvironment and had remarkable molecular imaging properties.展开更多
Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which ...Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which greatly limited the rate of the nucleation and the sequent growth. The emerging liquid metal catalyst possesses the characteristic of quasi-atomically smooth surface with high diffusion rate. In principle, it should be a naturally ideal platform for the lowdensity nucleation and the fast growth of graphene. However,the rapid growth of large graphene single crystals on liquid metals has not received the due attention. In this paper, we firstly purposed the insight into the rapid growth of large graphene single crystals on liquid metals. We obtained the millimeter-size graphene single crystals on liquid Cu. The rich free-electrons in liquid Cu accelerate the nucleation, and the isotropic smooth surface greatly suppresses the nucleation.Moreover, the fast mass-transfer of carbon atoms due to the excellent fluidity of liquid Cu promotes the fast growth with a rate up to 79 μm s^-1. We hope the research on the growth speed of graphene on liquid Cu can enrich the recognition of the growth behavior of two-dimensional(2 D) materials on the liquid metal. We also believe that the liquid metal strategy for the rapid growth of graphene can be extended to various 2 D materials and thus promote their future applications in the photonics and electronics.展开更多
Two-dimensional(2 D) transition metal phosphides(TMPs) are predicted with many novel properties and various applications. As a member of TMPs family, molybdenum phosphide(MoP) exhibits many exotic physicochemical prop...Two-dimensional(2 D) transition metal phosphides(TMPs) are predicted with many novel properties and various applications. As a member of TMPs family, molybdenum phosphide(MoP) exhibits many exotic physicochemical properties. However, the synthesis of high-quality2 D MoP single crystals is not reported due to the lack of reliable fabrication method, which limits the exploration of 2 D MoP. Here, we report the growth of high-quality ultrathin MoP single crystals with thickness down to 10 nm on liquid metals via chemical vapor deposition(CVD). The smooth surface of liquid Ga is regarded as a suitable growth substrate for producing 2 D MoP single crystals. The Mo source diffuses toward the Ga surface due to the high surface energy to react with phosphorus source, thus to fabricate ultrathin MoP single crystals. Then, we study the second harmonic generation(SHG) of 2 D MoP for the first time due to its intrinsic noncentrosymmetric structure. Our study provides an new approach to synthesize and explore other 2 D TMPs for future applications.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.81871334,81801764,82072056,and 51937010)the Guangdong Basic and Applied Basic Research Foundation(Nos.2017A050506011,2018030310343,2020B1515020008,2021A1515012542,and 2021A1515011882)+1 种基金the Medical Scientific Research Foundation of Guangdong Province(No.A2018014)the Pearl River Talented Young Scholar Program(No.2017GC010282).
文摘Radiotherapy(RT)mediated tumor immunogenicity offers an opportunity for simultaneous RT and immunotherapy via immunogenic cell death(ICD),which releases damaged-associated molecular patterns and generates“eat me”signals for the innate immune system to modulate the immunogenicity.However,tumor hypoxia significantly reduces the therapeutic efficacy of RT and hampers its mediation of ICD induction.Herein,Au@Bi_(2)Te_(3)-polyethylene glycol(PEG)was rationally constructed as theranostic nanozymes for mild photothermal therapy,tumor hypoxia modulation,and RT adjuvant cancer immunotherapy.The tumor-specific production of oxygen could not only augment the effects of RT by enhanced reactive oxygen species(ROS)generation,but also reduce hypoxia-related cytokines and downregulate programmed cell death-ligand 1(PD-L1)to unleash immune-enhancing T cells.Moreover,Au@Bi_(2)Te_(3)-PEG could act as an immune-blocking inhibitor by efficient ICD induction with the combination of mild-photothermal therapy+RT to inhibit the tumor immune escape and improve antitumor immune response.Increased amounts of CD^(4+) and CD^(8+) Tcells and elevated levels of cytokines could be observed that eventually led to effective post-medication inhibition of primary and abscopal tumors.Spectral computed tomography/photoacoustic imaging allowed noninvasive and real-time tracking of nanoparticle(NP)accumulation and oxygenation status at tumor sites.Collectively,Au@Bi_(2)Te_(3)-PEG NPs could serve as effective theranostic nanoregulators with remarkable synergistic mildphotothermal/RT/immunotherapy effects that helped reshape the immune microenvironment and had remarkable molecular imaging properties.
基金supported by the National Natural Science Foundation of China(21673161)the Sino-German Center for Research Promotion(1400)
文摘Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which greatly limited the rate of the nucleation and the sequent growth. The emerging liquid metal catalyst possesses the characteristic of quasi-atomically smooth surface with high diffusion rate. In principle, it should be a naturally ideal platform for the lowdensity nucleation and the fast growth of graphene. However,the rapid growth of large graphene single crystals on liquid metals has not received the due attention. In this paper, we firstly purposed the insight into the rapid growth of large graphene single crystals on liquid metals. We obtained the millimeter-size graphene single crystals on liquid Cu. The rich free-electrons in liquid Cu accelerate the nucleation, and the isotropic smooth surface greatly suppresses the nucleation.Moreover, the fast mass-transfer of carbon atoms due to the excellent fluidity of liquid Cu promotes the fast growth with a rate up to 79 μm s^-1. We hope the research on the growth speed of graphene on liquid Cu can enrich the recognition of the growth behavior of two-dimensional(2 D) materials on the liquid metal. We also believe that the liquid metal strategy for the rapid growth of graphene can be extended to various 2 D materials and thus promote their future applications in the photonics and electronics.
基金supported by the National Natural Science Foundation of China (21673161 and 21905210)the Sino-German Center for Research Promotion (GZ 1400)。
文摘Two-dimensional(2 D) transition metal phosphides(TMPs) are predicted with many novel properties and various applications. As a member of TMPs family, molybdenum phosphide(MoP) exhibits many exotic physicochemical properties. However, the synthesis of high-quality2 D MoP single crystals is not reported due to the lack of reliable fabrication method, which limits the exploration of 2 D MoP. Here, we report the growth of high-quality ultrathin MoP single crystals with thickness down to 10 nm on liquid metals via chemical vapor deposition(CVD). The smooth surface of liquid Ga is regarded as a suitable growth substrate for producing 2 D MoP single crystals. The Mo source diffuses toward the Ga surface due to the high surface energy to react with phosphorus source, thus to fabricate ultrathin MoP single crystals. Then, we study the second harmonic generation(SHG) of 2 D MoP for the first time due to its intrinsic noncentrosymmetric structure. Our study provides an new approach to synthesize and explore other 2 D TMPs for future applications.