Glucose-sensitive membrane has potential application in self-regulating insulin release.Phenylboronic acid(PBA)is a well-known glucose reporter.Unfortunately,most PBA-based glucose-sensitive materials are expansion-ty...Glucose-sensitive membrane has potential application in self-regulating insulin release.Phenylboronic acid(PBA)is a well-known glucose reporter.Unfortunately,most PBA-based glucose-sensitive materials are expansion-type,which are not suitable as chemical valves in membrane pores for self-regulating insulin release.According to a new glucose-sensitive mechanism,we synthesized PBA-based contraction-type glucose-sensitive liner polymer and microgels.Herein,a glucose-sensitive membrane was prepared by grafting PBA-based contraction-type glucose-sensitive linear polymer on the membrane surface.Through adjusting the chain length and chain density,the glucose-sensitivity of the membrane was optimized.The membrane can reversibly regulate insulin release at physiologically relevant glucose concentrations in simulates body fluids and fetal bovine serum.The membrane also has good stability,anti-fouling and biocom patibility.It has potential application in selfregulating insulin release.展开更多
The research and application of responsive materials have long been hampered by their complicated designs and tedious construction processes.Besides,many current responsive materials show retard or weak responsiveness...The research and application of responsive materials have long been hampered by their complicated designs and tedious construction processes.Besides,many current responsive materials show retard or weak responsiveness.In this study,responsive hybrid poly(vinyl alcohol)hydrogel membranes with embedded poly(N-isopropylacrylamide-acrylic acid)microgels as valves were constructed by simple mixing and subsequent freezing-thawing process.In the structure of the membranes,the matrix poly(vinyl alcohol)chains thread through and entangle with the microgels,and the microgels are firmly constrained within the hybrid hydrogel network.The fast and sharp temperature responsiveness of the embedded microgels was largely retained and endowed the hydrogel membrane with excellent temperature and pH responsiveness.Moreover,the hydrogel membrane showed excellent fatigue resistance in both temperature and pH-responsive flux examination.This study presented the great potential of these hybrid hydrogel membranes in biomedical applications and provided a new strategy for the future design and construction of responsive biomaterials.展开更多
As a typical plant virus which has biocompatibility and high transfection efficiency,tobacco mosaic virus(TMV)has shown broad application potential in drug or gene delivery field.Elucidating its intracellular traffick...As a typical plant virus which has biocompatibility and high transfection efficiency,tobacco mosaic virus(TMV)has shown broad application potential in drug or gene delivery field.Elucidating its intracellular trafficking is of great importance in investigation of its cytotoxicity,targeting site,and delivery efficiency,and is advantageous to designing new TMV-based drug delivery systems with different targets.By taking advantage of the regulated pH value of different organelles in a mammalian cell,we exploit a pH detection strategy to investigate the intracellular trafficking pathway of TMV.Here,we report a single-wavelength excited ratiometric fluorescent pH probe.This probe is constructed by simultaneously coupling pH-sensitive fluorescein isothiocyanate(FITC)and pH-insensitive rhodamine B isothiocyanate(RBIRC)onto the inner surface of TMV.The fluorescence intensity ratio of FITC to RBITC excited at 488 nm responds specifically towards pH value over other interferential agents.By taking use of this single-wavelength excited ratiometric pH probe and confocal laser scanning microscopy,it is shown that the endocytosed TMV is located in a pH decreasing microenvironment and eventually enters lysosomes.This work may provide important guidance on construction of TMV-based nano carriers.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52033004,52273109 and22275137)Cangzhou Institute of Tiangong University(No.TGCYY-F-0203)Hebei Province Natural Science Foundation(No.E2023110007)。
文摘Glucose-sensitive membrane has potential application in self-regulating insulin release.Phenylboronic acid(PBA)is a well-known glucose reporter.Unfortunately,most PBA-based glucose-sensitive materials are expansion-type,which are not suitable as chemical valves in membrane pores for self-regulating insulin release.According to a new glucose-sensitive mechanism,we synthesized PBA-based contraction-type glucose-sensitive liner polymer and microgels.Herein,a glucose-sensitive membrane was prepared by grafting PBA-based contraction-type glucose-sensitive linear polymer on the membrane surface.Through adjusting the chain length and chain density,the glucose-sensitivity of the membrane was optimized.The membrane can reversibly regulate insulin release at physiologically relevant glucose concentrations in simulates body fluids and fetal bovine serum.The membrane also has good stability,anti-fouling and biocom patibility.It has potential application in selfregulating insulin release.
基金supported by the National Natural Science Foundation of China(Nos.22275137 and 82202342)Natural Science Foundation of Tianjin Municipal Science and Technology Commission(No.21JCYBJC01810).
文摘The research and application of responsive materials have long been hampered by their complicated designs and tedious construction processes.Besides,many current responsive materials show retard or weak responsiveness.In this study,responsive hybrid poly(vinyl alcohol)hydrogel membranes with embedded poly(N-isopropylacrylamide-acrylic acid)microgels as valves were constructed by simple mixing and subsequent freezing-thawing process.In the structure of the membranes,the matrix poly(vinyl alcohol)chains thread through and entangle with the microgels,and the microgels are firmly constrained within the hybrid hydrogel network.The fast and sharp temperature responsiveness of the embedded microgels was largely retained and endowed the hydrogel membrane with excellent temperature and pH responsiveness.Moreover,the hydrogel membrane showed excellent fatigue resistance in both temperature and pH-responsive flux examination.This study presented the great potential of these hybrid hydrogel membranes in biomedical applications and provided a new strategy for the future design and construction of responsive biomaterials.
基金the National Key R&D Program of China(No.2018YFC1105300)the National Natural Science Foundation of China(Nos.51703230 and 21776021)+3 种基金the Bejjing Natural Science Foundation(No.7182110)the Cross Training Plan for High Level Talents in Beiingthe Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2017039)the Presidential Foundation of Technical Institute of Physics and Chemistry.
文摘As a typical plant virus which has biocompatibility and high transfection efficiency,tobacco mosaic virus(TMV)has shown broad application potential in drug or gene delivery field.Elucidating its intracellular trafficking is of great importance in investigation of its cytotoxicity,targeting site,and delivery efficiency,and is advantageous to designing new TMV-based drug delivery systems with different targets.By taking advantage of the regulated pH value of different organelles in a mammalian cell,we exploit a pH detection strategy to investigate the intracellular trafficking pathway of TMV.Here,we report a single-wavelength excited ratiometric fluorescent pH probe.This probe is constructed by simultaneously coupling pH-sensitive fluorescein isothiocyanate(FITC)and pH-insensitive rhodamine B isothiocyanate(RBIRC)onto the inner surface of TMV.The fluorescence intensity ratio of FITC to RBITC excited at 488 nm responds specifically towards pH value over other interferential agents.By taking use of this single-wavelength excited ratiometric pH probe and confocal laser scanning microscopy,it is shown that the endocytosed TMV is located in a pH decreasing microenvironment and eventually enters lysosomes.This work may provide important guidance on construction of TMV-based nano carriers.