期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mechanism research on arsenic removal from arsenopyrite ore during a sintering process 被引量:2
1
作者 Ri-jin Cheng Hong-wei Ni +2 位作者 Hua Zhang Xiao-kun Zhang si-cheng bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第4期353-359,共7页
The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the ... The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the sinter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The experimental results revealed that the reaction of arsenic removal is mainly related to the oxygen atmosphere and temperature. During the sintering process, arsenic could be removed in the ignition layer, the sinter layer, and the combustion zone. A portion of FeAsS reacted with excess oxygen to generate FeAsO4, and the rest of the FeAsS reacted with oxygen to generate As2O3(g) and SO2(g). A portion of As2O3(g) mixed with Al2O3or CaO, which resulted in the formation of arsenates such as AlAsO4and Ca3(AsO4)2, leading to arsenic residues in sintering products. The FeAsS component in the blending ore was difficult to decompose in the preliminary heating zone, the dry zone, or the bottom layer because of the relatively low temperatures; however, As2O3(g) that originated from the high-temperature zone could react with metal oxides, resulting in the formation of arsenate residues. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 ARSENIC Atmospheric temperature Atomic emission spectroscopy BLENDING Energy dispersive spectroscopy Ignition Inductively coupled plasma Iron ore sinter Iron ores Mechanisms Oxygen Pollution control Scanning electron microscopy Sulfur dioxide X ray diffraction X ray spectroscopy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部